Download presentation
Presentation is loading. Please wait.
1
Spanning Trees
2
Spanning trees Suppose you have a connected undirected graph –Connected: every node is reachable from every other node –Undirected: edges do not have an associated direction...then a spanning tree of the graph is a connected subgraph in which there are no cycles A connected, undirected graph Four of the spanning trees of the graph
3
Finding a spanning tree To find a spanning tree of a graph, pick a node and call it part of the spanning tree do a search from the initial node: each time you find a node that is not in the spanning tree, add to the spanning tree both the new node and the edge you followed to get to it An undirected graphResult of a BFS starting from top Result of a DFS starting from top
4
Minimizing costs Suppose you want to supply a set of houses (say, in a new subdivision) with: –electric power –water –sewage lines –telephone lines To keep costs down, you could connect these houses with a spanning tree (of, for example, power lines) –However, the houses are not all equal distances apart To reduce costs even further, you could connect the houses with a minimum-cost spanning tree
5
Minimum-cost spanning trees Suppose you have a connected undirected graph with a weight (or cost) associated with each edge The cost of a spanning tree would be the sum of the costs of its edges A minimum-cost spanning tree is that spanning tree that has the lowest cost AB ED FC 16 19 2111 33 14 18 10 6 5 A connected, undirected graph AB ED FC 16 11 18 6 5 A minimum-cost spanning tree
6
Kruskal’s algorithm T = empty spanning tree; E = set of edges; N = number of nodes in graph; while T has fewer than N - 1 edges { remove an edge (v, w) of lowest cost from E if adding (v, w) to T would create a cycle then discard (v, w) else add (v, w) to T } Finding an edge of lowest cost can be done just by sorting the edges Testing for a cycle requires a fairly complex algorithm (UNION-FIND) which we don’t cover in this course
7
Prim’s algorithm T = a spanning tree containing a single node s; E = set of edges adjacent to s; while T does not contain all the nodes { remove an edge (v, w) of lowest cost from E if w is already in T then discard edge (v, w) else { add edge (v, w) and node w to T add to E the edges adjacent to w } } An edge of lowest cost can be found with a priority queue Testing for a cycle is automatic
8
Mazes Typically, –Every location in a maze is reachable from the starting location –There is only one path from start to finish If the cells are “vertices” and the open doors between cells are “edges,” this describes a spanning tree Since there is exactly one path between any pair of cells, any cells can be used as “start” and “finish”
9
Building a maze I This algorithm requires two sets of cells –the set of cells already in the spanning tree, IN –the set of cells adjacent to the cells in the spanning tree (but not in it themselves), FRONTIER Start with all walls present Pick any cell and put it into IN (red) Put all adjacent cells, that aren’t in IN, into FRONTIER (blue)
10
Building a maze II Repeatedly do the following: –Remove any cell C from FRONTIER and put it in IN –Erase the wall between C and some adjacent cell in IN –Add to FRONTIER all the cells adjacent to C that aren’t in IN (or in FRONTIER already) Continue until there are no more cells in FRONTIER When the maze is complete (or at any time), choose the start and finish cells
11
The End
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.