Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.

Similar presentations


Presentation on theme: "1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by."— Presentation transcript:

1 1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Software Testing Techniques

2 2 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Software Testing Testing is the process of exercising a program with the specific intent of finding errors prior to delivery to the end user.

3 3 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 What Testing Shows errors requirements conformance performance an indication of quality

4 4 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Who Tests the Software? developer independent tester Understands the system but, will test "gently" and, is driven by "delivery" Must learn about the system, but, will attempt to break it and, is driven by quality

5 5 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Exhaustive Testing loop < 20 X There are 10 possible paths! If we execute one test per millisecond, it would take 3,170 years to test this program!! 14

6 6 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Selective Testing loop < 20 X Selected path

7 7 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Test Case Design "Bugs lurk in corners and congregate at boundaries..." Boris Beizer OBJECTIVE CRITERIA CONSTRAINT to uncover errors in a complete manner with a minimum of effort and time

8 8 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 White-Box Testing... our goal is to ensure that all statements and conditions have been executed at least once...

9 9 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Why Cover? logic errors and incorrect assumptions are inversely proportional to a path's execution probability we often believe believe that a path is not that a path is not likely to be executed; in fact, reality is often counter intuitive typographical errors are random; it's likely that untested paths will contain some

10 10 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Flow Graph Notation

11 11 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Transform Flowchart into Flow Graph

12 12 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Transform Flowchart into Flow Graph (2)

13 13 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Compound Statement

14 14 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Basis Path Testing First, we compute the cyclomatic complexity: number of simple decisions + 1 or number of enclosed areas + 1 In this case, V(G) = 4

15 15 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Cyclomatic Complexity A number of industry studies have indicated that the higher V(G), the higher the probability or errors. V(G) modules modules in this range are more error prone

16 16 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Basis Path Testing Next, we derive the independent paths: Since V(G) = 4, there are four paths Path 1: 1,2,3,6,7,8 Path 2: 1,2,3,5,7,8 Path 3: 1,2,4,7,8 Path 4: 1,2,4,7,2,4,...7,8 Finally, we derive test cases to exercise these paths. 1 2 3 4 56 7 8

17 17 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Basis Path Testing Notes you don't need a flow chart, but the picture will help when you trace program paths count each simple logical test, compound tests count as 2 or more basis path testing should be applied to critical modules

18 18 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001

19 19 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001

20 20 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Determine V(G)

21 21 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001

22 22 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Loop Testing NestedLoops Concatenated Loops Unstructured Loops Simpleloop

23 23 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Loop Testing: Simple Loops Minimum conditions—Simple Loops 1. skip the loop entirely 2. only one pass through the loop 3. two passes through the loop 4. m passes through the loop m < n 5. (n-1), n, and (n+1) passes through the loop where n is the maximum number of allowable passes

24 24 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Loop Testing: Nested Loops Start at the innermost loop. Set all outer loops to their minimum iteration parameter values. Test the min+1, typical, max-1 and max for the innermost loop, while holding the outer loops at their minimum values. Move out one loop and set it up as in step 2, holding all other loops at typical values. Continue this step until the outermost loop has been tested. If the loops are independent of one another then treat each as a simple loop then treat each as a simple loop else* treat as nested loops else* treat as nested loops endif* for example, the final loop counter value of loop 1 is used to initialize loop 2. Nested Loops Concatenated Loops

25 25 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Black-Box Testing requirements events input output

26 26 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Equivalence Partitioning: Sample Equivalence Classes user supplied commands responses to system prompts file names computational data physical parameters physical parameters bounding values bounding values initiation values initiation values output data formatting responses to error messages graphical data (e.g., mouse picks) data outside bounds of the program physically impossible data proper value supplied in wrong place Valid data Invalid data

27 27 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Testing Scenario  If you have functional requirement code, use these code as start point.  Identify range typical value, and try to put “anomaly” condition on your scenario.  One functional requirement can derived more than one test scenario

28 28 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Testing Scenario Example

29 29 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Chapter 18 Software Testing Strategies

30 30 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Testing Strategy unit test integrationtest validationtest systemtest

31 31 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Unit Testing module to be tested test cases results softwareengineer

32 32 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Unit Testing interface local data structures boundary conditions independent paths error handling paths module to be tested test cases

33 33 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Unit Test Environment Module stub stub driver RESULTS interface local data structures boundary conditions independent paths error handling paths test cases

34 34 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Integration Testing Strategies Options: the “big bang” approachthe “big bang” approach an incremental construction strategyan incremental construction strategy

35 35 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Top Down Integration top module is tested with stubs stubs are replaced one at a time, "depth first" as new modules are integrated, some subset of tests is re-run A B C DE FG

36 36 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Bottom-Up Integration drivers are replaced one at a time, "depth first" worker modules are grouped into builds and integrated A B C DE FG cluster

37 37 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Sandwich Testing Top modules are tested with stubs Worker modules are grouped into builds and integrated A B C DE FG cluster

38 38 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Debugging: A Diagnostic Process

39 39 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 The Debugging Process

40 40 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Debugging Effort time required to diagnose the symptom and determine the cause time required to correct the error and conduct regression tests

41 41 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Symptoms & Causes symptom cause symptom and cause may be geographically separated symptom may disappear when another problem is fixed cause may be due to a combination of non-errors cause may be due to a system or compiler error cause may be due to assumptions that everyone believes symptom may be intermittent

42 42 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Debugging: Final Thoughts Don't run off half-cocked, think about the about the symptom you're seeing. Use tools (e.g., dynamic debugger) to gain (e.g., dynamic debugger) to gain more insight. If at an impasse, get help get help from someone else. from someone else. Be absolutely sure to conduct regression tests when you do "fix" the bug. 1. 2. 3. 4.


Download ppt "1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by."

Similar presentations


Ads by Google