Download presentation
Presentation is loading. Please wait.
1
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 18 LU Decomposition and Matrix Inversion
2
EXAMPLE
3
Eliminate Column 1 PIVOTS
4
Eliminate Column 1
5
Eliminate Column 2 PIVOTS
6
Eliminate Column 2 Upper Triangular Matrix [ U ] Modified RHS { b }
7
LU Decomposition PIVOTS Column 1 PIVOTS Column 2
8
LU Decomposition As many as, and in the location of, zeros Upper Triangular Matrix U
9
LU Decomposition PIVOTS Column 1 PIVOTS Column 2 Lower Triangular Matrix L
10
LU Decomposition = This is the original matrix!!!!!!!!!!
11
LU Decomposition [ L ]{ y }{ b } [ A ]{ x }{ b }
12
LU Decomposition Lyb
13
Modified RHS { b }
14
LU Decomposition Ax=b A=LU -LU Decomposition Ly=b- Solve for y Ux=y- Solve for x
15
Matrix Inversion
16
[A][A] -1 [A] [A] -1 =[I] If [A] -1 does not exist [A] is singular
17
Matrix Inversion
18
Solution
19
Matrix Inversion [A] [A] -1 =[I]
20
Matrix Inversion
23
To calculate the invert of a nxn matrix solve n times :
24
Matrix Inversion For example in order to calculate the inverse of:
25
Matrix Inversion First Column of Inverse is solution of
26
Matrix Inversion Second Column of Inverse is solution of
27
Matrix Inversion Third Column of Inverse is solution of:
28
Use LU Decomposition
29
Use LU Decomposition – 1 st column Forward SUBSTITUTION
30
Use LU Decomposition – 1 st column Back SUBSTITUTION
31
Use LU Decomposition – 2 nd Column Forward SUBSTITUTION
32
Use LU Decomposition – 2 nd Column Back SUBSTITUTION
33
Use LU Decomposition – 3 rd Column Forward SUBSTITUTION
34
Use LU Decomposition – 3 rd Column Back SUBSTITUTION
35
Result
36
Test It
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.