Download presentation
Presentation is loading. Please wait.
1
Quantum Robot Analysis and entanglement
2
Classic Braitenberg FearAggression
3
Programmable Braitenberg H A B PQ A = Left Light Sensor B = Right Light Sensor P = Motor for Left Wheel Q = Motor for Right Wheel Circuit Implemented by Program Ultrasonic Sensor Sound/Touch Sensor
4
Selected Circuits A B Q P A B Q P A B Q P A B Q P A B Q P 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 00 01 10 11 00 01 10 11 Direct ConnectionSwap Gate Feynman Gate 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 00 01 10 11 00 01 10 11 Feynman+SwapEinstein-Podolsky-RosenAnd-OR Gates Identity Matrix 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 00 01 10 11 00 01 10 11 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 00 01 10 11 00 01 10 11 1 0 0 1 0 1 0 -1 1 0 -1 0 00 01 10 11 00 01 10 11 1 √2 1 0 0 0 0 1 0 0 0 0 0 1 00 01 10 11 00 01 10 11 A B Q P H
5
Representing Gates via Matrices ABPQBehavior 0000Robot stays stationary. 0101Robot moves left. 1011Robot moves forward. 1110Robot moves right. Input Output
6
Using Binary Gates ABPQBehavior 0000Robot stays stationary. 0101Robot moves left. 1001 1111Robot moves forward. A B Q P Feynman Gate 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 00 01 10 11 00 01 10 11 A B Q P And-OR Gates 1 0 0 0 0 1 1 0 0 0 0 0 0 1 00 01 10 11 00 01 10 11 ABPQBehavior 0000Robot stays stationary. 0101Robot moves left. 1011Robot moves forward. 1110Robot moves right. This behavior is deterministic because it can be determined how the robot will react to a given input.
7
Using Quantum Gates APBehavior 0½ 0 ½ 1 Motor stops or moves. 1½ 0 ½ 1 Motor stops or moves. A P Hadamard H X = Which in Dirac Notation is, Which after Measurement means, ½ probability of ‘0’ & ½ probability of ‘1’ HadamardInput A=0Output
8
Entanglement Example A B Q P H
9
Entanglement Example – Step 1 ABPQBehavior 000101 0000 Robot stays stationary. Or, moves tight 010101 1111 Robot moves left. Or, moves forward 100101 0000 Robot stays stationary. Or, moves tight 110101 1111 Robot moves left. Or, moves forward A B Q P Hadamard in parallel with wire 1 0 0 1 1 0 -1 0 0 1 0 -1 00 01 10 11 00 01 10 11 H A P H APBehavior 0½ 0 ½ 1 Motor stops or moves. 1½ 0 ½ 1 Motor stops or moves. Hadamard A P APBehavior 00Stopped 11Moving Wire 1 √2 =
10
Entanglement Example – Step 2 ABPQBehavior 00½ 0 ½ 1 ½ 0 ½ 1 Stationary or moves forward. 01½ 0 ½ 1 ½ 0 Turns left or turns right. 10½ 0 ½ 1 ½ 0 ½ 1 Stationary or moves forward. 11½ 0 ½ 1 ½ 0 Turns left or turns right. A B Q P Einstein-Podolsky-Rosen 1 0 0 1 0 1 0 -1 1 0 -1 0 00 01 10 11 00 01 10 11 1 √2 H A B Q P Feynman Gate 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 00 01 10 11 00 01 10 11 ABPQBehavior 0000Robot stays stationary. 0101Robot moves left. 1011Robot moves forward. 1110Robot moves right. 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 00 01 10 11 00 01 10 11 1 0 0 1 1 0 -1 0 0 1 0 -1 00 01 10 11 00 01 10 11 1 √2 X =
11
Putting it together H A B PQ AB False True False True 1 0 0 1 0 1 0 -1 1 0 -1 0 00 01 10 11 00 01 10 11 01000100 00 01 10 11 Selected Combination 01100110 PQ False True False True 1 √2 1 Vector ‘I’ Vector ‘O’ Matrix ‘M’ O = M * I Measurement Either the robot will turn left or turn right with equal probability.
12
Another example of entanglement H A B PQ AB False True False True 1 0 0 1 0 1 0 -1 1 0 -1 0 00 01 10 11 00 01 10 11 10001000 00 01 10 11 Selected Combination 10011001 PQ False True False True 1 √2 1 Vector of inputs in a room with no light Vector ‘O’ Matrix ‘M’ O = M * I Measurement Either the robot will go forward or stop with equal probability. This robot will never turn left or right although is still probabilistic. This is demonstration of entanglement. Will never detonate a bomb.
13
Next: Quantum Automaton Robot
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.