Download presentation
1
Preliminary experimental results
Universidad de Córdoba Preliminary experimental results on the QL-lamp fed by 2.45 GHz microwave power Antonio Gamero Department of Physics, University of Cordoba, Spain.
2
Contents - Studies of HF discharges at the University of Cordoba
UNIVERSIDAD DE CÓRDOBA Contents - Studies of HF discharges at the University of Cordoba - HF Discharges as Light Sources. Microwave-fed QL-lamp Spectroscopic measurements Radiometric measurements Surface wave in coaxial structure Conclusion / Future Eindhoven University of Technology (Netherlands) J.J.A.M. van der Mullen University of Granada (Spain) M. Rubiño, Y. Yebra and M.M. Pérez LPGIP. Université Paris-Sud (Orsay, France) C. Boisse-Laporte
3
Group of HF Discharges :
Departamento de Física UNIVERSIDAD DE CÓRDOBA Group of HF Discharges : Dr. Carlos Lao Dr. M. Carmen Quintero Dr. Antonio Rodero Dr. Antonio Sola Dr. Antonio Gamero Ph. Students: Olga Carabaño Manuel Fernández José Mª Palomares Sebastián Rubio Jesús Torres
4
Group of HF Discharges :
UNIVERSIDAD DE CÓRDOBA Departamento de Física Group of HF Discharges : Surface Wave Discharges (SWDs) Plasma Torches - Coaxial Discharges Spectroscopic Diagnostics Excitation Source for Spectrochemical Analysis Destruction of Volatile Organic Compounds (VOCs) - HF Discharges as Light Sources
5
Surface wave Discharges
POWER GENERATOR z = 0 Surfatron dielectric tube waveguide ref P Power meter inc gas manometer pump stubs plasma Microwave frequency: GHz Microwave power: up to 200 W (1500 W) Gas: Ar, He Pressure: mTorr – 1 atm
6
Microwave Plasma Produced by the Axial Injection Torch (TIA)
TIA (Torch á Injection Axiale) noozle tuneable coaxial plunger gas flame WR-340 waveguide z=10-12 mm f= 2.45 GHz Characteristics Microwave power range: W Length: mm Diameter: mm Gas flow rate range: L min-1
7
Spectroscopic Diagnostics
- Atomic Emission Spectroscopy Molecular Emission Spectroscopy Atomic State Distribution Function (ASDF) Departure from LTE
8
Destruction of Volatile Organic Compounds (VOCs)
by using microwave plasma produced by the Axial Injection Torch (TIA) Reactor Microwave Generator Reactor Gas Chromatograph Computer Plasma torch He 0,5% TCE 99,5% He TCE = trichloroethylene Destruction and Removal Efficiency (DRE ) > %
9
HF Discharges as Light Sources. Microwave-fed QL-lamp
(low-pressure argon, 2.45 GHz) The QL-lamp from Philips, at 2.65 MHz (commercialized since 1992) Experimental version : Argon filled pressure: 66, 133 Pa. Amalgam: Bi/In/Hg in a mass ratio of 68/29/3 Acknowledgment to Dr Wim Hellebrekers (Philips Lighting)
10
QL-lamp at 2.45 GHZ Experimental Set-up Experimental version :
mercury amalgam cavity microwave antenna auxiliary amalgam Measure point: 4 mm from the inner tube 45 mm below the antenna end Experimental version : Argon filled pressure: 133 Pa. Amalgam: Bi/In/Hg in a mass ratio of 68/29/3
11
Spectroscopic Experimental Set-up
Monochromator Photomultiplier CCD Camera Entrance slit Optic fibre QL-lamp Ribbon lamp COMPONENTS DESCRIPTION Microwave generator Microtron 200 Mark 3 (Electron Medical Supplies) Monochromator THR-1000 (Jobin-Ivon) 1200 grooves/mm grating Fotomultiplier Hamamatsu R636 QL-lamp Experimental version. Argon filled pressure: 133 Pa Amalgam: Bi/In/Hg in a mass ratio of 68/29/3 Tungsten Ribbon Lamp 28/G/UV (Polaron Engineering Ltd.)
12
Atomic State Distribution Function
Ar Hg effective quantum number
13
Atomic State Distribution Function
Ar Hg Atomic State Distribution Function - Excitation Saturation Balance (ESB) x 5 ionisation processes neglected x = 5
14
Radiometric Experimental Set-up
COMPONENTS DESCRIPTION Microwave generator Microtron 200 Mark 3 (Electron Medical Supplies) Spectroradiometer QL-lamp Comercial version. Argon filled pressure: 133 Pa Amalgam: Bi/In/Hg in a mass ratio of 68/29/3
15
Radiance (Wat/strd·m2)
Results Lamp Radiance (Wat/strd·m2) Luminance (Cd/m2) x, y, z Color Temperature Dominant Wavelength Purity Efficacy (Lm/W) Relative Flux RF 80 W 177,2 63.620 0.4138, , 3336 583,0 46,04% 75.00 100% µW 20 W 13,52 5.104 0.4463, , 2973 582,0 62,78% 24.05 7,58% µW 40 W 21,79 8.162 0.4415, , 3017 582,1 60,25% 19.25 12,25% µW 60 W 25,37 9.458 0.4402, , 3030 582,2 59,59% 14.87 14,29% µW 90 W 28,63 10.550 0.4387, , 3037 582,4 58,24% 11.06 16,29%
16
Results □ RF (80 W) ■ μW (90 W) ■ μW (60 W) ■ μW (40 W) ■ μW (20 W)
17
l (nm) Results Spectral radiance (watt/sr·m ) 20 W 40 W 60 W 90 W 400
500 600 700 800 200 1000 1200 1400 Spectral radiance (watt/sr·m ) 2 l (nm) 20 W 40 W 60 W 90 W
18
m l (nm) Results ) Spectral radiance (watt/sr·m W (40 W) RF (80 W) 400
500 600 700 800 1 2 3 4 5 6 7 Spectral radiance (watt/sr·m ) l (nm) m W (40 W) RF (80 W)
19
Radiance (Wat/strd·m2)
Results Lamp Radiance (Wat/strd·m2) Luminance (Cd/m2) x, y, z Color Temperature Dominant Wavelength Purity Efficacy (Lm/W) Relative Flux RF 80 W 177,2 63.620 0.4138, , 3336 583,0 46,04% 75.00 100% µW 20 W 13,52 5.104 0.4463, , 2973 582,0 62,78% 24.05 7,58% µW 40 W 21,79 8.162 0.4415, , 3017 582,1 60,25% 19.25 12,25% µW 60 W 25,37 9.458 0.4402, , 3030 582,2 59,59% 14.87 14,29% µW 90 W 28,63 10.550 0.4387, , 3037 582,4 58,24% 11.06 16,29%
20
Coaxial Discharge Discharge Inner Conductor Dielectric Tubes
21
Surface Wave Discharges
Coaxial structure Plasma ep Air e = 1 Metallic guide Antenna Dielectric tube ev = 3.8 Antenna R0 = 1.5 mm Inner tube R1 = mm R2 = mm Outer tube R3 = mm R4 = mm Guide R5 = mm
22
Surface Wave Propagation
mode I mode II _____ 1/1 + v - Radially uniform plasma - Two solutions Azimuthally symmetric modes Er , Ez , H
23
Radial profile of the electric field Mode I
- Outside Er > Ez - Inside Er < Ez Minimum electric field exists going to the internal tube with the ne - Ein < Eext ne
24
Radial profile of the electric field Mode II
- Outside Er > Ez - Inside Er < Ez Minimum electric field exists going to the external tube with the ne - Ein ~ Eext ne
25
Conclusions / Future It has been possible to produce a stable microwave QL-lamp at 2.45 GHz at the pressure of 1 Torr. The microwave coupler must be improved in order to optimise the power absorbed by the plasma and so the efficiency of the lamp. The relative importance of the both possible modes of the surface wave must be experimentally investigated under different experimental conditions. The propagation of the surface wave in coaxial structure must be solved for different geometric dimension and for plasmas radially no uniform, looking for the best conditions of operation. New experimental measurements must be made under these new conditions.
26
Thank you for your attention
Universidad de Córdoba Thank you for your attention Antonio Gamero Department of Physics, University of Cordoba, Spain.
28
Lines measured Ar lines Hg lines l (nm) Ek (cm-1) gk Akj (108 s-1)
Transition 415.85 117184 5 0.0145 5p 4s 419.07 116999 419.83 117563 1 0.0276 420.06 116943 7 0.0103 425.93 118871 0.0415 427.21 117151 3 0.0084 430.01 433.35 118469 0.0060 696.54 107496 0.067 4p 4s 706.72 107290 0.0395 727.29 0.0200 738.39 0.087 750.38 108723 0.472 751.46 107054 0.430 763.51 106238 0.274 772.42 0.127 794.81 107132 0.196 800.61 0.0468 801.47 105617 0.096 810.36 106087 0.277 811.53 105463 0.366 826.45 0.168 840.82 0.244 842.46 0.233 852.14 0.147 Hg lines l (nm) Ek (cm-1) gk Akj (108 s-1) Transition 404,65 62350 3 0.21 7s 6p 407,78 63928 1 0.040 410,80 78404 0.030 9s 6p 433,92 77108 5 0.0288 7d 6p 435,83 0.557 491,60 74405 0.058 8s 6p 546,07 0.487 576,95 71396 0.236 6d 6p 690,75 76824 0.028 8p 7s
29
Meeting in Granada (Spain), September 22-23, 2005
COST ACTION 529 “Efficient Lighting for the 21th century” Workshop “Radiometric, photometric and color measurements of light sources and applications” Meeting in Granada (Spain), September 22-23, 2005 “Radiometric (and spectroscopic) measurements on a low-pressure argon QL-lamp fed by 2.45 GHz microwaves” by O. Carabaño, M. Fernández, A. Gamero and A. Sola, University of Cordoba (Spain) M Rubiño, Y. Yebra and M.M. Pérez, University of Granada (Spain) J.J.A.M. van der Mullen, University of Eindhoven (Netherlands)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.