Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008.

Similar presentations


Presentation on theme: "1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008."— Presentation transcript:

1 1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008

2 2 Outline Motivation Theory Numerical Tests Schlumberger VSP data set GOM VSP data set Conclusions Motivation TheoryNumerical Tests Conclusions

3 3 Outline Motivation TheoryNumerical Tests Conclusions Motivation Theory Numerical Tests Schlumberger VSP data set GOM VSP data set Conclusions

4 4 Standard P-to-S Migration x s m(x) ~ s ~ ds G(x|s) Forward source P P S g G(x|g)* D(g|s)dg Backward data S g * Converted wave VSP D(g|s) Motivation TheoryNumerical Tests Conclusions

5 5 Interferometric P-to-S Migration x s P P S D(g|g’) ~ s ~ ds * g’ g D(g’|s) D(g|s) m(x) ~ g’ ~ dg’dg g D(g|g’)G(x|g)G(x|g’) ** Virtual source gather Motivation TheoryNumerical Tests Conclusions

6 6 Outline Motivation TheoryNumerical Tests Motivation Theory Numerical Tests Schlumberger VSP data set GOM VSP data set Conclusions

7 7 x s P P S m(x) ~ s ~ ds g’ G(x|g’)* D(g’,s) dg’ Backward P G(x|g)* D(g,s)dg Backward S g g’ g * Local Reverse Time Migration Theory Motivation TheoryNumerical Tests Conclusions

8 8 Benefits Target oriented! Introduction Numerical Tests –Only a local velocity model near the well is needed. –Salt and overburden is avoided. –Fast and easy to perform. Source statics are automatically accounted for. Immune to salt-related interbed cross- talk. Theory Conclusions

9 9 Outline Introduction Numerical Tests Conclusion Motivation Theory Numerical Tests Schlumberger VSP data set GOM VSP data set Conclusions Theory

10 10 Depth (km) Offset (km) 10 -1212 0 Schlumberger 2D Isotropic Elastic Model 0 Introduction Numerical TestsTheory Conclusions

11 11 Depth (km) 10 0 Offset (km) -12 12 0 (a) Ray tracing direct P (c) PPS events (d) Pp events (b) PSS events Depth (km) 10 0 Offset (km) -12 12 0 Aperture by Ray Tracing Introduction Numerical TestsTheory Conclusions

12 12 Direct P PPS PSS Depth (km) Time (s) 8 0 6 VSP CSG X-component VSP CSG Z-component 4 Depth (km) 8 4 Two-component VSP Synthetic Data Set Introduction Numerical Tests Conclusion Theory

13 13 Depth (km) 8.5 6 Offset (km) 0 1.8 (a) Standard Kirchhoff (c) Interferometric migration (IM)(d) Local RTM (b) Reduced-time migration (RM) Depth (km) 8.5 6 Offset (km) 1.8 0 Introduction Numerical Tests Conclusion Theory Comparison with Migration Methods

14 14 Outline Introduction Numerical Tests Conclusion Motivation Theory Numerical Tests Schlumberger VSP data set GOM VSP data set Conclusions Theory

15 15 Depth (m) Offset (m) 4878 0 1829 0 GOM VSP Well and Source Location Source @150 m offset Introduction TheoryNumerical Tests Conclusions 2800 m 3200 m Salt

16 16 P-to-S ratio = 2.7 Velocity Profile S Wave P Wave Depth (m) 0 4500 050000 2800 m 3200 m Salt Incorrect velocity model P-to-S ratio = 1.6 Introduction TheoryNumerical Tests Conclusions Velocity (m/s)

17 17 Z-Component VSP Data Depth (m) Traveltime (s) 2652 3887 1.23.0 Salt Direct P Reflected P Reverberations Introduction TheoryNumerical Tests Conclusions

18 18 X-Component VSP Data Depth (m) Traveltime (s) 2652 3887 1.23.0 Salt Direct P Reflected P ReverberationsDirect S Introduction TheoryNumerical Tests Conclusions

19 19 Processing Workflow Original Data Rotate components Pick desired events Median filtering Migration (KM, RM, IM, RTM) Introduction TheoryNumerical Tests Conclusions

20 20 Raypath Coverage 2000 4200 0200 Depth (m) Migration of PPS Salt Offset (m) Introduction TheoryNumerical Tests Conclusions

21 21 Migration of PPS Salt RMIM 02000 KM 2000 4200 0200 Depth (m) Offset (m) Introduction Numerical Tests Conclusion Theory Offset (m)

22 22 Migration of PPS Salt IM, sediment floodLocal RTM 02000 RM 2000 4200 0200 Depth (m) Offset (m) Introduction Numerical Tests Conclusion Theory Offset (m)

23 23 Conclusions Local RTM improves salt flank imaging. Introduction TheoryNumerical Tests Conclusions Imaging improvement is attained with a 1D velocity model. Immune to salt-related interbed cross- talks.

24 24 Thank you! Thank the sponsors of the 2005 UTAM consortium for their support.

25 25 Depth (m) Offset (m) 4878 0 200 0 Local RTM Image Introduction Numerical Tests Conclusion Theory IM 0200 Offset (m)

26 26 Future works Motivation TheoryNumerical Tests Conclusions

27 27 Separation While Imaging Step 1: Elastic backward propagation of the whole wavefield; Step 2: P- and S- wavefield separation; Devaney and Oristaglio (1986) Dellinger and Etgen (1990) Step 3: Crosscorrelate the P- and S- waves;

28 28 Depth (m) Offset (m) 4878 01829 0 Local RTM Image Introduction Numerical Tests Conclusion Theory


Download ppt "1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008."

Similar presentations


Ads by Google