Download presentation
Presentation is loading. Please wait.
1
ECE 232 L12.Datapath.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 12 Datapath Design (single-cycle) www.ecs.umass.edu/ece/labs/vlsicad/ece232/spr2002/index_232.html
2
ECE 232 L12.Datapath.2 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Outline °Design a processor: step-by-step °Requirements of the Instruction Set °Components and clocking °Assembling an adequate Datapath °Controlling the Datapath
3
ECE 232 L12.Datapath.3 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers The Big Picture: Where are We Now? °The Five Classic Components of a Computer °Today’s Topic: Design a Single Cycle Processor Control Datapath Memory Processor Input Output
4
ECE 232 L12.Datapath.4 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers The Big Picture: The Performance Perspective °Performance of a machine is determined by : Instruction count Clock cycle time Clock cycles per instruction °Processor design (datapath and control) will determine : Clock cycle time Clock cycles per instruction °Today: Single cycle processor: -Advantage: One clock cycle per instruction -Disadvantage: long cycle time CPI Inst. CountCycle Time
5
ECE 232 L12.Datapath.5 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers How to Design a Processor: step-by-step °1. Analyze instruction set => datapath requirements the meaning of each instruction is given by the register transfers datapath must include storage element for ISA registers -possibly more datapath must support each register transfer °2. Select set of datapath components and establish clocking methodology °3. Assemble datapath meeting the requirements °4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. °5. Assemble the control logic
6
ECE 232 L12.Datapath.6 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers The MIPS Instruction Formats °All MIPS instructions are 32 bits long. The three instruction formats: R-type I-type J-type °The different fields are: op: operation of the instruction rs, rt, rd: the source and destination register specifiers shamt: shift amount funct: selects the variant of the operation in the “op” field address / immediate: address offset or immediate value target address: target address of the jump instruction optarget address 02631 6 bits26 bits oprsrtrdshamtfunct 061116212631 6 bits 5 bits oprsrt immediate 016212631 6 bits16 bits5 bits
7
ECE 232 L12.Datapath.7 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Step 1a: The MIPS-lite Subset for today °ADD and SUB addU rd, rs, rt subU rd, rs, rt °OR Immediate : ori rt, rs, imm16 °LOAD and STORE Word lw rt, rs, imm16 sw rt, rs, imm16 °BRANCH: beq rs, rt, imm16 oprsrtrdshamtfunct 061116212631 6 bits 5 bits oprsrtimmediate 016212631 6 bits16 bits5 bits oprsrtimmediate 016212631 6 bits16 bits5 bits oprsrtimmediate 016212631 6 bits16 bits5 bits
8
ECE 232 L12.Datapath.8 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Logical Register Transfers °RTL gives the meaning of the instructions °All start by fetching the instruction op | rs | rt | rd | shamt | funct = MEM[ PC ] op | rs | rt | Imm16 = MEM[ PC ] inst Register Transfers ADDUR[rd] <– R[rs] + R[rt];PC <– PC + 4 SUBUR[rd] <– R[rs] – R[rt];PC <– PC + 4 ORiR[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 LOADR[rt] <– MEM[ R[rs] + sign_ext(Imm16)];PC <– PC + 4 STOREMEM[ R[rs] + sign_ext(Imm16) ] <– R[rt];PC <– PC + 4 BEQ if ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4
9
ECE 232 L12.Datapath.9 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Step 1: Requirements of the Instruction Set °Memory instruction & data °Registers (32 x 32) read RS read RT Write RT or RD °PC °Extender °Add and Sub register or extended immediate °Add 4 or extended immediate to PC
10
ECE 232 L12.Datapath.10 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Step 2: Components of the Datapath °Combinational Elements °Storage Elements Clocking methodology
11
ECE 232 L12.Datapath.11 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Combinational Logic Elements (Basic Building Blocks) °Adder °MUX °ALU 32 A B Sum Carry 32 A B Result OPOP 32 A B Y Selec t Adder MUX ALU CarryIn
12
ECE 232 L12.Datapath.12 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Storage Element: Register (Basic Building Block) °Register Similar to the D Flip Flop except -N-bit input and output -Write Enable input Write Enable: -negated (0): Data Out will not change -asserted (1): Data Out will become Data In Clk Data In Write Enable NN Data Out
13
ECE 232 L12.Datapath.13 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Storage Element: Register File °Register File consists of 32 registers: Two 32-bit output busses: busA and busB One 32-bit input bus: busW °Register is selected by: RA (number) selects the register to put on busA (data) RB (number) selects the register to put on busB (data) RW (number) selects the register to be written via busW (data) when Write Enable is 1 °Clock input (CLK) The CLK input is a factor ONLY during write operation During read operation, behaves as a combinational logic block: -RA or RB valid => busA or busB valid after “access time.” Clk busW Write Enable 32 busA 32 busB 555 RWRARB 32 32-bit Registers
14
ECE 232 L12.Datapath.14 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Storage Element: Idealized Memory °Memory (idealized) One input bus: Data In One output bus: Data Out °Memory word is selected by: Address selects the word to put on Data Out Write Enable = 1: address selects the memory word to be written via the Data In bus °Clock input (CLK) The CLK input is a factor ONLY during write operation During read operation, behaves as a combinational logic block: -Address valid => Data Out valid after “access time.” Clk Data In Write Enable 32 DataOut Address
15
ECE 232 L12.Datapath.15 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Clocking Methodology °All storage elements are clocked by the same clock edge °Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew °(CLK-to-Q + Shortest Delay Path - Clock Skew) > Hold Time Clk Don’t Care SetupHold........................ SetupHold
16
ECE 232 L12.Datapath.16 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Step 3 °Register Transfer Requirements –> Datapath Assembly °Instruction Fetch °Read Operands and Execute Operation
17
ECE 232 L12.Datapath.17 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers 3a: Overview of the Instruction Fetch Unit °The common RTL operations Fetch the Instruction: mem[PC] Update the program counter: -Sequential Code: PC <- PC + 4 -Branch and Jump: PC <- “something else” 32 Instruction Word Address Instruction Memory PC Clk Next Address Logic
18
ECE 232 L12.Datapath.18 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers 3b: Add & Subtract °R[rd] <- R[rs] op R[rt] Example: addU rd, rs, rt Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields ALUctr and RegWr: control logic after decoding the instruction 32 Result ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb 32 32-bit Registers RsRtRd ALU oprsrtrdshamtfunct 061116212631 6 bits 5 bits
19
ECE 232 L12.Datapath.19 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Register-Register Timing Clk PC ALUctr RegWr busA, B busW Rs, Rt, Rd, Op, Func Clk-to-Q Instruction Memory Access Time Old ValueNew Value Old ValueNew Value Delay through Control Logic Register File Access Time Old ValueNew Value ALU Delay Old ValueNew Value Old ValueNew Value Old Value 32 Result ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb 32 32-bit Registers RsRtRd ALU Register Write Occurs Here
20
ECE 232 L12.Datapath.20 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers 3c: Logical Operations with Immediate °R[rt] <- R[rs] op ZeroExt[imm16] ] 32 Result ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb 32 32-bit Registers Rs RtRd RegDst ZeroExt Mux 32 16 imm16 ALUSrc ALU 11 oprsrtimmediate 016212631 6 bits16 bits5 bits rd? immediate 0161531 16 bits 0 0 0 0 0 0 0 0
21
ECE 232 L12.Datapath.21 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers 3d: Load Operations °R[rt] <- Mem[R[rs] + SignExt[imm16]]Example: lw rt, rs, imm16 11 oprsrtimmediate 016212631 6 bits16 bits5 bits rd ExtOp 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb 32 32-bit Registers Rs RtRd RegDst Extender Mux 32 16 imm16 ALUSrc Clk Data In WrEn 32 Adr Data Memory 32 ALU MemWr Mux W_Src
22
ECE 232 L12.Datapath.22 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers 3e: Store Operations °Mem[ R[rs] + SignExt[imm16] <- R[rt] ] Example: sw rt, rs, imm16 oprsrtimmediate 016212631 6 bits16 bits5 bits ALUSrc ExtOp 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb 32 32-bit Registers Rs Rt Rd RegDst Extender Mux 32 16 imm16 Clk Data In WrEn 32 Adr Data Memory MemWr ALU 32 Mux W_Src
23
ECE 232 L12.Datapath.23 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers 3f: The Branch Instruction °beqrs, rt, imm16 mem[PC]Fetch the instruction from memory Equal <- R[rs] == R[rt]Calculate the branch condition if (COND eq 0)Calculate the next instruction’s address -PC <- PC + 4 + ( SignExt(imm16) x 4 ) else -PC <- PC + 4 oprsrtimmediate 016212631 6 bits16 bits5 bits
24
ECE 232 L12.Datapath.24 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Datapath for Branch Operations °beq rs, rt, imm16 Datapath generates condition (equal) oprsrtimmediate 016212631 6 bits16 bits5 bits 32 imm16 PC Clk 00 Adder Mux Adder 4 nPC_sel Clk busW RegWr 32 busA 32 busB 555 RwRaRb 32 32-bit Registers Rs Rt Equal? Cond PC Ext Inst Address
25
ECE 232 L12.Datapath.25 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Putting it All Together: A Single Cycle Datapath
26
ECE 232 L12.Datapath.26 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers An Abstract View of the Critical Path °Register file and ideal memory: The CLK input is a factor ONLY during write operation During read operation, behave as combinational logic: -Address valid => Output valid after “access time.” Critical Path (Load Operation) = PC’s Clk-to-Q + Instruction Memory’s Access Time + Register File’s Access Time + ALU to Perform a 32-bit Add + Data Memory Access Time + Setup Time for Register File Write + Clock Skew Clk 5 RwRaRb 32 32-bit Registers Rd ALU Clk Data In Data Address Ideal Data Memory Instruction Address Ideal Instruction Memory Clk PC 5 Rs 5 Rt 16 Imm 32 A B Next Address
27
ECE 232 L12.Datapath.27 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Step 4: Given Datapath: RTL -> Control ALUctr RegDst ALUSrc ExtOp MemtoRegMemWr Equal Instruction Imm16RdRsRt nPC_sel Adr Inst Memory DATA PATH Control Op Fun RegWr
28
ECE 232 L12.Datapath.28 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Meaning of the Control Signals (see slide 28) °Rs, Rt, Rd and Imed16 hardwired into datapath °nPC_sel: 0 => PC PC <– PC + 4 + SignExt(Im16) || 00 Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_sel PC Ext imm16
29
ECE 232 L12.Datapath.29 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Meaning of the Control Signals (see slide 28) °ExtOp:“zero”, “sign” °ALUsrc:0 => regB; 1 => immed °ALUctr:“add”, “sub”, “or” °MemWr:write memory °MemtoReg:1 => Mem °RegDst:0 => “rt”; 1 => “rd” °RegWr:write dest register
30
ECE 232 L12.Datapath.30 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Control Signals inst Register Transfer ADDR[rd] <– R[rs] + R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4” SUBR[rd] <– R[rs] – R[rt];PC <– PC + 4 ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?), nPC_sel =__ ORiR[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?), nPC_sel =__ LOADR[rt] <– MEM[ R[rs] + sign_ext(Imm16)];PC <– PC + 4 ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?), nPC_sel =__ STOREMEM[ R[rs] + sign_ext(Imm16)] <– R[rs];PC <– PC + 4 ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?), nPC_sel =__ BEQif ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4 ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?), nPC_sel =__
31
ECE 232 L12.Datapath.31 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Control Signals inst Register Transfer ADDR[rd] <– R[rs] + R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4” SUBR[rd] <– R[rs] – R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4” ORiR[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel = “+4” LOADR[rt] <– MEM[ R[rs] + sign_ext(Imm16)];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4” STOREMEM[ R[rs] + sign_ext(Imm16)] <– R[rs];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4” BEQif ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4 nPC_sel = EQUAL, ALUctr = “sub”
32
ECE 232 L12.Datapath.32 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Step 5: Logic for each control signal °nPC_sel <= if (OP == BEQ) then EQUAL else 0 °ALUsrc <=if (OP == “000000”) then “regB” else “immed” °ALUctr<= if (OP == “000000”) then funct elseif (OP == ORi) then “OR” elseif (OP == BEQ) then “sub” else “add” °ExtOp <= _____________ °MemWr<= _____________ °MemtoReg<= _____________ °RegWr:<=_____________ °RegDst:<= _____________
33
ECE 232 L12.Datapath.33 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Step 5: Logic for each control signal °nPC_sel <= if (OP == BEQ) then EQUAL else 0 °ALUsrc <=if (OP == “000000”) then “regB” else “immed” °ALUctr<= if (OP == “000000”) then funct elseif (OP == ORi) then “OR” elseif (OP == BEQ) then “sub” else “add” °ExtOp <= if (OP == ORi) then “zero” else “sign” °MemWr<= (OP == Store) °MemtoReg<= (OP == Load) °RegWr:<= if ((OP == Store) || (OP == BEQ)) then 0 else 1 °RegDst:<= if ((OP == Load) || (OP == ORi)) then 0 else 1
34
ECE 232 L12.Datapath.34 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Example: Load Instruction
35
ECE 232 L12.Datapath.35 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers An Abstract View of the Implementation °Logical vs. Physical Structure Data Out Clk 5 RwRaRb 32 32-bit Registers Rd ALU Clk Data In Data Address Ideal Data Memory Instruction Address Ideal Instruction Memory Clk PC 5 Rs 5 Rt 32 A B Next Address Control Datapath Control Signals Conditions
36
ECE 232 L12.Datapath.36 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers A Real MIPS Datapath (CNS T0)
37
ECE 232 L12.Datapath.37 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers Summary °5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic °MIPS makes it easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates °Single cycle datapath => CPI=1, CCT => long °Next time: implementing control
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.