Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Performance of Heat Pumps in the Pacific Northwest Larry Palmiter Erin Kruse Ecotope, Inc. Presentation for RTF Meeting Portland, OR November 4, 2003.

Similar presentations


Presentation on theme: "1 Performance of Heat Pumps in the Pacific Northwest Larry Palmiter Erin Kruse Ecotope, Inc. Presentation for RTF Meeting Portland, OR November 4, 2003."— Presentation transcript:

1 1 Performance of Heat Pumps in the Pacific Northwest Larry Palmiter Erin Kruse Ecotope, Inc. Presentation for RTF Meeting Portland, OR November 4, 2003

2 2 Overview of Presentation RTF Calculations and Basic Results Heat Pump Basics HSPF and SEER Heat Pump Sizing Duct Efficiency Model Details of Bin Model Calculations

3 3 Outline of Calculations Load simulation using Sunday Model Uses building UA, setpoints, window area and orientation, internal gains, and weather data Accounts for thermal storage, setpoints, solar and internal gains No ducts Produces annual space heat kWh Calibrate Ecotope Bin Model Select gains level in bin model to match annual space heat for same UA and weather site

4 4 Outline of Calculations (cont) Develop scaling and sizing criteria Develop scaling laws for heat pump capacity, CFM and input power Develop criteria for sizing heat pump for each prototype and climate Use calibrated bin model Estimate heat pump and electric furnace performance for selected combinations of duct parameters for each prototype and climate zone Use results to create simple RTF estimation method

5 5 RTF Estimation for Annual kWh Heat kWh = Heating load / (M*HSPF) M = DM*OM*CM*(7.2+EF*(HSPF-7.2)) Cool kWh = Cooling Load / (N*SEER) N = DM*CM*(10+EF*(SEER-10)) where (Note: values differ for HSPF and SEER) DM = duct efficiency multiplier OM = control option multiplier (not used for SEER) CM = climate multiplier EF = enhancement factor Separate DM for each of many cases

6 6 House 4 UA 377RTF Multipliers CONTROL OPTIONS (OM) PORSEABOISPKMIS 5KW Strip Heat with Compressor0.5930.5860.690 0.726 5KW Strip Heat below 30°F0.9400.9560.8360.8370.827 Compressor off below 30°F0.9000.9260.7040.7050.674 CLIMATE (CM) PORSEABOISPKMIS HSPF Climate Multiplier1.1501.1680.9880.9910.937 SEER Climate Multiplier 0.9090.9200.8800.8940.892 ENHANCEMENT (EF) PORSEABOISPKMIS HSPF Enhancement Factor1.0181.0280.9050.8970.862 SEER Enhancement Factor1.0301.0601.0051.0401.049 RTF Multipliers (No Ducts)

7 7 Heat Pump Basics In heating mode Capacity goes down with lower outdoor temp. Power input goes down with lower outdoor temp. COP goes down with lower outdoor temp. In cooling mode Capacity goes down with higher outdoor temp. Power input goes up with higher outdoor temp. COP goes down with higher outdoor temp. Note all capacity, power input and COP values include effects of fan heat

8 8 Heat Pump Basics (cont) Overall performance depends on –Efficiency of equipment –Climate –Size of heat pump relative to load (inc. ducts) –Duct Losses –Two-stage thermostat behavior

9 9 From ASHRAE 2000 Systems and Equipment Handbook

10 10

11 11 HSPF 9.0 SEER 14.5 HSPF 7.2 SEER 10 Heat Pump COP vs Temp.

12 12 Bin Hours for NW Climates

13 13 HP Factors Not Present in RTF Several factors affecting energy use are not (yet) included in the RTF results –Two-stage thermostats may result in auxiliary strip heat use when setback is used –Crankcase heater energy: about 65 W when compressor not running –Use of auxiliary strip heat during defrost: could be estimated from known defrost time –Altitude effects

14 14 New Advanced Heat Pumps There are two promising new approaches to improved cold climate performance –Cold Climate Heat Pump www.nyletherm.com HSPF = 9.6 SEER = 16 in Zone 5 Capacity = 4 tons at 0 F, no strip heat above 0 F –Reverse Cycle Chiller Concept Large heat pump with water storage tank No strip heat above 0 F

15 15 HSPF and SEER Based on Standard published in 1979 HSPF –Size minimum design load to capacity at 47 F –Bin method for six climates and several loads –Warning: label is only for Zone 4, min. load SEER –Based on wet coil tests at 82 F outdoor temp. –Includes Part Load Factor at 50% duty

16 16

17 17

18 18 1½ Ton 2½ Ton 3 Ton 3½ Ton 4 Ton 5 Ton 2 Ton 123 6 6547 Zone 4 Zone 5 Slope = 480 UA/ton = 160 ARI Method of Sizing Load for 3 Ton Heat Pump Slope = 600 UA/ton = 200 Slope = UA / Duct Eff.

19 19 TestCoilIndoor TemperatureOutdoor Temperature SEER Dry Bulb °FWet Bulb °FDry Bulb °FWet Bulb °F A- Steady State Wet80679575 B- Steady State Wet80678265 C- Steady State Dry80<588265 D- Cycling 6 min on, 24 off Dry80<588265 HSPF High Temp- Steady State Dry70604743 Low Temp- Steady State Dry70601715 Frost Accumulation Dry70603533 Cycling 6 min on, 24 off Dry70604743 Laboratory Tests Used to Calculate HSPF & SEER

20 20 Zone Design Temperature Calculated HSPF, YKC Calculated HSPF, YSA 1 37°F9.0411.63 2 27°F8.7510.97 3 17°F8.3410.27 4 5°F7.669.12 5 -10°F6.677.67 6 30°F8.8511.26 Carrier 38YKC, nominal HSPF 7.2, nominal SEER 10.0, CFM 1250, Cd 0.14 Carrier 38YSA, nominal HSPF 9.0, nominal SEER 14.5, CFM 1050, Cd 0.06 HSPF Calculations for 6 Zones

21 21 DOE/ARI Calculation of Heating Season Performance Factor (HSPF) Calculations use the equations in ARI Standard 210/240 (2003) Appendix C5.2 (formerly Appendix A) Programmed by Larry Palmiter, Ecotope Inc, September 2003 Defrost values at 35 F for capacity and input were estimated from values at 47 and 17 F using the formula in C4.2.1.3 page 19 Coefficient of Degradation at part load was estimated from cooling mode EER(82) and the SEER equations in C5.1.1 and assumed the same for heating. All heat flow values are in Btuh. Balance point of house is 65 F. SYS is overall system efficiency including part load factor and backup heat. Heat Pump Model: YKC036 Capacity(47): 36000 Input(47): 11672 COP(47): 3.08 Capacity(35): 27144 Input(35): 10691 COP(35): 2.54 Capacity(17): 21400 Input(17): 9625 COP(17): 2.22 Coefficient of Degradation:.14

22 22 ZONE 1 ---------------------------------- Heating Outdoor Design Temperature (F)..... 37 Minimum Design Heat Requirement (Btuh)..... 16800 Minimum UA (Btuh/F)........................ 600 Standard Minimum Heat Requirement (Btuh)... 15000 Standard Minimum UA (Btuh/F)............... 536 Tout Binfr Qload Capacity Auxiliary Input PLF COP SYS 62.291 1238 43300 0 12696.864 3.410 2.947 57.239 3300 40867 0 12355.871 3.308 2.882 52.194 5362 38433 0 12014.880 3.199 2.814 47.129 7425 36000 0 11672.889 3.084 2.741 42.081 9488 29378 0 11105.905 2.645 2.395 37.041 11550 27782 0 10809.918 2.570 2.360 32.019 13613 26187 0 10513.933 2.491 2.323 27.005 15675 24591 0 10217.949 2.407 2.285 22.001 17738 22996 0 9921.968 2.318 2.244 HSPF = 9.04 Rated Zone 4 HSPF = 7.20 Sum of Bin Fractions = 1

23 23 ZONE 2 ---------------------------------- Heating Outdoor Design Temperature (F)..... 27 Minimum Design Heat Requirement (Btuh)..... 22800 Minimum UA (Btuh/F)........................ 600 Standard Minimum Heat Requirement (Btuh)... 25000 Standard Minimum UA (Btuh/F)............... 658 Tout Binfr Qload Capacity Auxiliary Input PLF COP SYS 62.215 1520 43300 -0 12696.865 3.410 2.950 57.189 4053 40867 0 12355.874 3.308 2.891 52.163 6586 38433 0 12014.884 3.199 2.828 47.143 9118 36000 0 11672.895 3.084 2.762 42.112 11651 29378 0 11105.916 2.645 2.422 37.088 14184 27782 0 10809.931 2.570 2.394 32.056 16717 26187 0 10513.949 2.491 2.365 27.024 19250 24591 0 10217.970 2.407 2.334 22.008 21783 22996 0 9921.993 2.318 2.301 17.002 24316 21400 2916 9625 1.000 2.223 1.939 HSPF = 8.75 Rated Zone 4 HSPF = 7.20 Sum of Bin Fractions = 1

24 24 ZONE 3 ---------------------------------- Heating Outdoor Design Temperature (F)..... 17 Minimum Design Heat Requirement (Btuh)..... 28800 Minimum UA (Btuh/F)........................ 600 Standard Minimum Heat Requirement (Btuh)... 30000 Standard Minimum UA (Btuh/F)............... 625 Tout Binfr Qload Capacity Auxiliary Input PLF COP SYS 62.153 1444 43300 0 12696.865 3.410 2.949 57.142 3850 40867 -0 12355.873 3.308 2.888 52.138 6256 38433 0 12014.883 3.199 2.824 47.137 8662 36000 0 11672.894 3.084 2.756 42.135 11069 29378 0 11105.913 2.645 2.415 37.118 13475 27782 0 10809.928 2.570 2.385 32.092 15881 26187 0 10513.945 2.491 2.354 27.047 18288 24591 0 10217.964 2.407 2.321 22.021 20694 22996 0 9921.986 2.318 2.285 17.009 23100 21400 1700 9625 1.000 2.223 2.040 12.005 25506 18967 6540 9283 1.000 2.043 1.612 7.002 27913 16533 11379 8942 1.000 1.849 1.374 2.001 30319 14100 16219 8601 1.000 1.639 1.222 HSPF = 8.34 Rated Zone 4 HSPF = 7.20 Sum of Bin Fractions = 1

25 25 ZONE 4 ---------------------------------- Heating Outdoor Design Temperature (F)..... 5 Minimum Design Heat Requirement (Btuh)..... 36000 Minimum UA (Btuh/F)........................ 600 Standard Minimum Heat Requirement (Btuh)... 35000 Standard Minimum UA (Btuh/F)............... 583 Tout Binfr Qload Capacity Auxiliary Input PLF COP SYS 62.132 1348 43300 0 12696.864 3.410 2.948 57.111 3593 40867 0 12355.872 3.308 2.885 52.103 5839 38433 0 12014.881 3.199 2.819 47.093 8085 36000 0 11672.891 3.084 2.749 42.100 10331 29378 0 11105.909 2.645 2.405 37.109 12577 27782 0 10809.923 2.570 2.373 32.126 14823 26187 0 10513.939 2.491 2.340 27.087 17068 24591 0 10217.957 2.407 2.304 22.055 19314 22996 0 9921.978 2.318 2.266 17.036 21560 21400 160 9625 1.000 2.223 2.203 12.026 23806 18967 4839 9283 1.000 2.043 1.686 7.013 26052 16533 9518 8942 1.000 1.849 1.411 2.006 28297 14100 14198 8601 1.000 1.639 1.241 -3.002 30543 11667 18877 8259 1.000 1.413 1.126 -8.001 32789 9233 23556 7918 1.000 1.166 1.042 HSPF = 7.66 Rated Zone 4 HSPF = 7.20 Sum of Bin Fractions = 1

26 26 ZONE 5 ---------------------------------- Heating Outdoor Design Temperature (F).....-10 Minimum Design Heat Requirement (Btuh)..... 36000 Minimum UA (Btuh/F)........................ 480 Standard Minimum Heat Requirement (Btuh)... 35000 Standard Minimum UA (Btuh/F)............... 467 Tout Binfr Qload Capacity Auxiliary Input PLF COP SYS 62.106 1078 43300 0 12696.863 3.410 2.945 57.092 2875 40867 0 12355.870 3.308 2.877 52.086 4671 38433 0 12014.877 3.199 2.806 47.076 6468 36000 0 11672.885 3.084 2.730 42.078 8265 29378 0 11105.899 2.645 2.379 37.087 10061 27782 0 10809.911 2.570 2.341 32.102 11858 26187 0 10513.923 2.491 2.300 27.094 13655 24591 0 10217.938 2.407 2.257 22.074 15451 22996 0 9921.954 2.318 2.211 17.055 17248 21400 0 9625.973 2.223 2.163 12.047 19045 18967 78 9283 1.000 2.043 2.034 7.038 20841 16533 4308 8942 1.000 1.849 1.573 2.029 22638 14100 8538 8601 1.000 1.639 1.321 -3.018 24435 11667 12768 8259 1.000 1.413 1.162 -8.010 26231 9233 16998 7918 1.000 1.166 1.053 -13.005 28028 6800 28028 7577 1.000.897 1.000 -18.002 29825 4367 29825 7236 1.000.604 1.000 -23.001 31621 1933 31621 6894 1.000.280 1.000 HSPF = 6.67 Rated Zone 4 HSPF = 7.20 Sum of Bin Fractions = 1

27 27 ZONE 6 ---------------------------------- Heating Outdoor Design Temperature (F)..... 30 Minimum Design Heat Requirement (Btuh)..... 21000 Minimum UA (Btuh/F)........................ 600 Standard Minimum Heat Requirement (Btuh)... 20000 Standard Minimum UA (Btuh/F)............... 571 Tout Binfr Qload Capacity Auxiliary Input PLF COP SYS 62.113 1320 43300 0 12696.864 3.410 2.948 57.205 3520 40867 0 12355.872 3.308 2.884 52.215 5720 38433 0 12014.881 3.199 2.818 47.204 7920 36000 0 11672.891 3.084 2.747 42.141 10120 29378 0 11105.908 2.645 2.403 37.076 12320 27782 0 10809.922 2.570 2.370 32.034 14520 26187 0 10513.938 2.491 2.336 27.008 16720 24591 0 10217.955 2.407 2.299 22.003 18920 22996 0 9921.975 2.318 2.260 HSPF = 8.85 Rated Zone 4 HSPF = 7.20 Sum of Bin Fractions =.999

28 28 Duct Efficiency Model A modified and expanded version of the model used in ASHRAE Standard 152 The model includes the following effects Conduction loss on supply and return side Air leakage on supply and return side Effect of unbalanced leakage on house infiltration Thermal regain of duct losses from buffer zones Capacity of equipment and mass flow rate of air Arrangement of ducts in buffer zones

29 29 BSR/ASHRAE Standard 152P This standard will be submitted to the American National Standards Institute Board of Standards Review (BSR) for approval. ASHRAE ® STANDARD PROPOSED AMERICAN NATIONAL STANDARD Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems THIRD PUBLIC REVIEW June 2001 ©2001 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. This draft has been recommended by the project committee and approved by a subcommittee of the Standards Committee for public review. Instructions and a form for commenting are provided with this draft. The changes proposed in this draft are subject to modification before final review and approval by ASHRAE. Although reproduction of drafts during the public review period is encour­aged to promote additional comment, permission must be obtained to reproduce all or any part of this document from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. Phone: 404-636-8400, Ext. 502. Fax: 404-321-5478. E-mail: cramspeck@ashrae.org. The form for commenting and instructions may be obtained in electronic form from ASHRAE's Internet Home Page, http://www.ashrae.org. Printed copies of a public review draft may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E- mail: orders@ashrae.org. Fax:404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1800-527-4723 (for orders in U.S. and Canada). AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC. 1791 Tullie Circle, NE · Atlanta GA 30329-2305

30 30 T room = T rr

31 31 Delivery Efficiency Both the model developed by Palmiter and Francisco (1997) (with the modifications found in Francisco and Palmiter 1999) and the one in Standard 152 use the same equation for the delivery efficiency under heating conditions, which is (1) whereη = delivery efficiency α s = leakage efficiency for supply ducts α r = leakage efficiency for return ducts β s = conduction efficiency for supply β r = conduction efficiency for return  t s = temperature difference between indoors and the ambient for the supply  t r = temperature difference between indoors and the ambient for the return  t e = temperature rise across heat exchanger Leakage efficiency can be defined as the fraction of the air handler flow that is delivered to the conditioned space by the ducts. From standard heat exchanger theory, the conduction efficiency can be expressed as, x = s (for supply) or x = r (for return)(2) whereA = surface area of ducts m e = mass flow of air through air handler fan at operating conditions C p = specific heat of air R = duct unit thermal resistance

32 32 Supply Duct Surface Area in Unconditioned Space and R-value (n=39) Variable MeanMin10%25%50%75%90%Max Supply Duct Area (ft 2 )28581207222296342409451 Pct. of Floor Area17.87.210.013.717.520.925.529.8 Supply R-value4.01.51.72.04.05.17.48.1 Duct Leakage Under Normal Operating Pressures as Percent of Air Handler Flow (n=48) Variable MeanMin10%25%50%75%90%Max Supply Nulling11.5-0.24.76.98.915.024.630.5 Supply Benchmark11.80.12.78.410.514.325.029.8 Supply Delta-Q13.1-2.33.87.512.319.423.031.9 Return Nulling10.4-3.91.04.68.315.423.736.8 Return Benchmark12.90.84.37.710.315.322.641.8 Return Delta-Q12.5-5.21.95.410.220.326.040.5 Recent Field Measurements of Duct Properties in Puget Sound Area Homes Source: Field Evaluation Of Improved Methods For Measuring The Air Leakage Of Duct Systems Under Normal Operating Conditions In 51 Homes. Published by Ecotope, October 2003

33 33 Heat Pump Sizing for RTF The overall performance of a heat pump in heating mode is strongly affected by the capacity relative to the building load In Pacific Northwest climates the cooling load is small relative to heating and predominantly sensible (dry coil) The next two slides show the sizing results for the RTF study

34 34 City / Design Temp Size (tons) UA / Ton Heating Duct Eff. Cooling Duct Eff. HSPF Multiplier SEER Multiplier Heating Sys. Eff. Cooling Sys. Eff. Heating kWH Cooling kWH Balance Point (F) POR 22 °F1.712200.7940.9031.1570.9161.9382.425313754629.1 SEA 23 °F1.662270.8010.9071.1750.9261.9852.462350727830.2 BOI 2 °F2.581460.7640.9100.9930.8891.6012.3714940150119.1 SPO 1 °F2.621430.7630.9170.9900.9051.5932.432626087619.2 MIS -9 °F3.061230.7550.9210.9400.8991.4982.426828474116.1 City / Design Temp Size (tons) UA / Ton Heating Duct Eff. Cooling Duct Eff. HSPF Multiplier SEER Multiplier Heating Sys. Eff. Cooling Sys. Eff. Heating kWH Cooling kWH Balance Point (F) POR 22 °F2.131770.6280.8151.1500.9091.5232.170399161130.8 SEA 23 °F2.061830.6370.8231.1680.9201.5692.218443630831.9 BOI 2 °F3.391110.5850.8310.9880.8801.2202.1436481166020.6 SPO 1 °F3.421100.5870.8420.9910.8941.2282.206854390121.2 MIS -9 °F4.06920.5700.8520.9370.8921.1262.2261102180717.7 Typical Ducts: 10% leakage, R-4 nominal (R-3 act.) on both supply and return Good Ducts: 5% leakage, R-11 nom (R-8.25 act.) on both supply and return Heat Pump Sizing Results Carrier 38YKC, nominal HSPF 7.2, nominal SEER 10.0, CFM 1250, Cd 0.14 Ecotope Inc, September 28,2003 House 4, 1350 Sq. ft., UA 377

35 35 4765 SEA SPO MIS POR BOI Slope = UA / Duct Eff. 1½ Ton 2½ Ton 3 Ton 3½ Ton 4 Ton 5 Ton 2 Ton

36 36 Detailed Bin Model Results The bin model has two modes of operation –In the first mode it automatically generates thousands of runs for analysis –In the second mode it generates detailed output tables and graphs for a particular run specification The following sets of slides show detailed results for Portland and Missoula for the typical ducts case.

37 37 PORTLAND: Typical Ducts YKC 2.13 Tons Ho = 377.00 Hg = 10.03 He = 958.5 Ko = 519.41 Kg = 20.63 Ke = 796.4 Jo = 142.41 Jg = 10.60 Buffer Zones = 2 As =.900 Ar =.900 Bs =.8808 Br =.9726 CFMe = 888 Theat = 65 Tcool = 75 Qgains = 3808 Tbalheat = 55.21 Tbalcool = 65.48 Tlow = -35 Tcomf = -35 Furn =.00 Kwadd=.00 To Hours DDbal Cap InKw COP Qbase Qdis Fon PLF Dte Qneed Qhp Qaux DuctEff SysEff 112.00.0 -20547 - 2.88 2.094 -17538 -12035 1.0000 1.0000 -28.35 -27171 -9814 -3163.645 1.351 107.23 -.4 -21186 - 2.80 2.213 -15653 -13278 1.0000 1.0000 -25.09 -24045 -9572 -1292.651 1.441 102 2.63 -4.0 -21804 - 2.73 2.337 -13768 -14503.9575.9931 -22.59 -20735 -8933 0.664 1.541 97 9.13 -12.0 -22408 - 2.66 2.466 -11883 -15717.7873.9665 -22.60 -17051 -7154 0.697 1.661 92 29.93 -33.1 -23032 - 2.59 2.604 -9998 -16948.6303.9432 -22.67 -13694 -5575 0.730 1.793 87 81.30 -72.9 -23671 - 2.52 2.752 -8113 -18191.4866.9229 -22.79 -10630 -4186 0.763 1.938 82 151.21 -104.1 -24289 - 2.45 2.905 -6228 -19416.3559.9051 -22.94 -7824 -2975 0.796 2.093 77 252.05 -121.0 -24893 - 2.37 3.076 -4343 -20630.2368.8895 -23.10 -5242 -1916 0.828 2.266 72 416.89 -113.3 -25496 - 2.30 3.247 -2458 -21843.1280.8757 -23.29 -2857 -1005 0.860 2.447 67 616.66 -39.1 -26100 - 2.22 3.441 -573 -23057.0285.8634 -23.51 -643 -216 0.892 2.649 62 1021.35.0 32305 2.71 3.490 0 25471.0000.8600 28.99 0 0 0.782 1.000 57 1248.43.0 29891 2.61 3.361 0 23466.0000.8600 26.82 0 0 0.778 1.000 52 1257.73 168.4 27725 2.51 3.232 1212 21060.0672.8682 25.11 1618 577 0.749 2.101 47 1387.20 474.8 25560 2.43 3.084 3097 18549.1926.8838 23.57 4350 1596 0.712 1.940 42 1159.39 638.3 22685 2.36 2.820 4982 15448.3642.9062 21.45 7486 2930 0.665 1.700 37 657.07 498.7 19809 2.28 2.547 6867 12346.6049.9396 19.42 11258 4705 0.610 1.459 32 316.12 305.8 17999 2.21 2.388 8752 10130.8875.9820 18.44 15686 6688 0.558 1.308 27 92.44 108.7 16188 2.14 2.219 10637 7914 1.0000 1.0000 20.31 19465 7294 3277.546 1.006 22 40.94 56.7 15016 2.07 2.122 12522 6228 1.0000 1.0000 23.57 22591 7076 7574.554.855 17 18.90 30.1 13845 2.00 2.026 14407 4543 1.0000 1.0000 26.83 25716 6834 11871.560.770 12 5.80 10.4 12709 1.93 1.928 16292 2887 1.0000 1.0000 30.09 28842 6591 16133.565.717 7.60 1.2 11573 1.87 1.816 18177 1231 1.0000 1.0000 33.35 31968 6373 20395.569.679 2.00.0 10117 1.80 1.644 20062 -691 1.0000 1.0000 36.61 35093 6155 24976.572.644 -3.00.0 8662 1.73 1.465 21947 -2612 1.0000 1.0000 39.87 38219 5913 29557.574.619 -8.00.0 7207 1.66 1.271 23832 -4534 1.0000 1.0000 43.13 41345 5670 34138.576.599 -13.00.0 5751 1.60 1.055 25717 -6455 1.0000 1.0000 46.40 44470 5452 38719.578.582 -18.00.0 48711 14.27.821 27602 28528.9675 1.0000 50.82 47129 47129 0.586.586 -23.00.0 49707 14.56.569 29487 28643 1.0000 1.0000 52.92 50721 49707 1015.581.581 -28.00.0 50702 14.86.292 31372 28759 1.0000 1.0000 56.18 53847 50702 3145.583.583 -33.00.0 51698 15.15.000 33257 28874 1.0000 1.0000 59.44 56973 51698 5274.584.584 Summary Toavg DDbal KWHbase KWHneed KWHhp KWHaux KWHtot DuctEff SysEff Savings relative to Cooling 73.168 499.758 1324.877 1635.371 610.400.087 610.487.810 2.170 Electric Furnace Heating 44.065 2292.983 6078.789 9522.814 3714.254 276.362 3990.616.638 1.523 4327 kWh Total 53.176 2792.740 7403.666 11158.185 4324.654 276.449 4601.103.664 1.609 52 %

38 38 Portland

39 39 Portland

40 40 Portland

41 41 Portland

42 42 MISSOULA: Typical Ducts YKC 4.06 Tons Ho = 377.00 Hg = 10.03 He = 1827.0 Ko = 585.18 Kg = 20.01 Ke = 1589.9 Jo = 208.18 Jg = 9.98 Buffer Zones = 2 As =.900 Ar =.900 Bs =.9356 Br =.9855 CFMe = 1692 Theat = 65 Tcool = 75 Qgains = 4895 Tbalheat = 52.57 Tbalcool = 62.84 Tlow = -35 Tcomf = -35 Furn =.00 Kwadd=.00 To Hours DDbal Cap InKw COP Qbase Qdis Fon PLF Dte Qneed Qhp Qaux DuctEff SysEff 112.00.0 -39165 - 5.48 2.094 -18534 -26690.7334.9584 -20.55 -27528 -13719 0.673 1.351 107.03 -.1 -40383 - 5.35 2.213 -16649 -28790.6223.9421 -20.82 -23674 -11353 0.703 1.466 102.87 -1.4 -41561 - 5.21 2.337 -14764 -30856.5227.9279 -21.11 -20156 -9294 0.732 1.589 97 9.57 -13.6 -42711 - 5.08 2.466 -12879 -32898.4328.9155 -21.40 -16923 -7497 0.761 1.718 92 54.90 -66.7 -43902 - 4.94 2.604 -10994 -34975.3510.9044 -21.73 -13936 -5917 0.789 1.858 87 115.57 -116.3 -45120 - 4.80 2.752 -9109 -37076.2765.8946 -22.09 -11163 -4534 0.816 2.009 82 180.81 -144.4 -46298 - 4.67 2.905 -7224 -39142.2091.8859 -22.45 -8577 -3332 0.842 2.168 77 244.78 -144.4 -47448 - 4.52 3.076 -5339 -41184.1477.8782 -22.81 -6153 -2278 0.868 2.343 72 316.95 -121.0 -48598 - 4.38 3.247 -3454 -43226.0914.8712 -23.17 -3871 -1368 0.892 2.524 67 403.29 -69.9 -49749 - 4.24 3.441 -1569 -45268.0398.8648 -23.55 -1713 -575 0.916 2.726 62 532.49.0 61577 5.17 3.490 0 51613.0000.8600 28.99 0 0 0.833 1.000 57 678.00.0 56975 4.97 3.361 0 47608.0000.8600 26.82 0 0 0.830 1.000 52 747.74 17.8 52848 4.79 3.232 216 43075.0059.8607 24.90 268 96 0.806 2.243 47 770.47 178.9 48720 4.63 3.084 2101 38442.0640.8678 23.14 2705 1011 0.777 2.079 42 853.51 376.0 43239 4.49 2.820 3986 32632.1422.8775 20.77 5397 2181 0.739 1.827 37 940.08 610.0 37758 4.34 2.547 5871 26821.2524.8915 18.42 8498 3743 0.691 1.569 32 1059.39 908.1 34307 4.21 2.388 7756 22777.3865.9092 17.07 12056 5552 0.643 1.397 27 699.83 745.7 30856 4.07 2.219 9641 18733.5681.9343 15.78 16379 7899 0.589 1.221 22 434.85 553.9 28623 3.95 2.122 11526 15748.7752.9647 15.11 21404 10455 0.538 1.102 17 287.08 425.5 26390 3.82 2.026 13411 12764 1.0000 1.0000 14.85 27133 13025 743.494.974 12 169.34 286.3 24225 3.68 1.928 15296 9839 1.0000 1.0000 16.69 30495 12563 6270.502.812 7 108.64 206.3 22059 3.56 1.816 17181 6914 1.0000 1.0000 18.53 33857 12148 11798.507.717 2 65.17 137.3 19285 3.44 1.644 19066 3458 1.0000 1.0000 20.37 37219 11732 17934.512.643 -3 36.94 85.5 16511 3.30 1.465 20951 3 1.0000 1.0000 22.21 40582 11270 24071.516.593 -8 24.30 61.3 13736 3.17 1.271 22836 -3452 1.0000 1.0000 24.05 43944 10808 30207.520.557 -13 17.70 48.4 10962 3.04 1.055 24721 -6907 1.0000 1.0000 25.89 47306 10393 36344.523.529 -18 9.33 27.4 65655 19.24.821 26606 39648.6710 1.0000 35.94 44058 44058 0.604.604 -23 3.53 11.1 67888 19.89.569 28491 40551.7026 1.0000 37.16 47698 47698 0.597.597 -28.83 2.8 70122 20.55.292 30376 41454.7328 1.0000 38.38 51383 51383 0.591.591 -33.00.0 72356 21.20.000 32261 42356.7616 1.0000 39.60 55110 55110 0.585.585 Summary Toavg DDbal KWHbase KWHneed KWHhp KWHaux KWHtot DuctEff SysEff Savings relative to Cooling 75.100 677.865 1797.048 2112.470 807.204.000 807.204.851 2.226 Electric Furnace Heating 34.531 4682.354 12413.110 20950.825 9265.584 1755.690 11021.274.592 1.126 6957 kWh Total 44.078 5360.219 14210.158 23063.295 10072.789 1755.690 11828.478.616 1.201 39 %

43 43 Missoula

44 44 Missoula

45 45 Missoula

46 46 Missoula


Download ppt "1 Performance of Heat Pumps in the Pacific Northwest Larry Palmiter Erin Kruse Ecotope, Inc. Presentation for RTF Meeting Portland, OR November 4, 2003."

Similar presentations


Ads by Google