Presentation is loading. Please wait.

Presentation is loading. Please wait.

Still trying to get in? 1.Make sure you’re on the Banner waiting list. 2.If you think you might drop, please do so soon. 3.For general registration questions,

Similar presentations


Presentation on theme: "Still trying to get in? 1.Make sure you’re on the Banner waiting list. 2.If you think you might drop, please do so soon. 3.For general registration questions,"— Presentation transcript:

1 Still trying to get in? 1.Make sure you’re on the Banner waiting list. 2.If you think you might drop, please do so soon. 3.For general registration questions, contact: Kim Kolb Biology Office (Rm. 315) kim.kolb@wwu.edu

2 David Hooper Dept. of Biology Rm. 307, Bio. Building hooper@biol.wwu.edu 650-3649 See webpage for syllabus

3 Why am I here? Biology is so cool!

4 Why am I here? Sustainability?

5 Biodiversity and ecosystem functioning: The context (Chapin et al. 2000)

6 California Serpentine Grassland

7 What factors allow for successful invasion of exotic species?

8 Toolik Lake Effects of temperature and vegetation on ecosystem carbon balance in Arctic tundra Terry picture

9 Riparian restoration Well, how do I get there? And, is it enough? ?

10 Students involved

11 Goals of this course 1.Content: Introduce the diversity of life, ecology and evolutionary biology in an integrated way; 2.Content/Skills: Introduce and practice scientific methods (by doing); 3.Content/Skills: Introduce some basic tools of biology (lab); 4.Skills: Scientific communication – writing and presentations (lab). 5.Skills: Quantitative reasoning = use math to answer biological questions

12 Bloom’s taxonomy of learning 1.Basic knowledge  memorizing facts, processes 6CO 2 + 6H 2 O +light  C 6 H 12 O 6 + O 2 2.Secondary comprehension  understanding & illustrating facts 3.Application  generalizing to other situations 4.Analysis  understanding why, breaking the problem down 5.Synthesis  making connections 6.Evaluation  use knowledge critically to assess information

13 Bloom’s taxonomy of learning 1.Basic knowledge  memorizing facts, processes 2.Secondary comprehension  understanding & illustrating facts -Light and dark reactions lead to CO 2 conversion to sugar -Most plant biomass comes from CO 2 in the air! 3.Application  generalizing to other situations 4.Analysis  understanding why, breaking the problem down 5.Synthesis  making connections 6.Evaluation  use knowledge critically to assess information

14 Bloom’s taxonomy of learning 1.Basic knowledge  memorizing facts, processes 2.Secondary comprehension  understanding & illustrating facts 3.Application  generalizing to other situations Photosynthesis at the whole ecosystem level – can we calculate the total CO 2 uptake from an area of forest? 4.Analysis  understanding why, breaking the problem down 5.Synthesis  making connections 6.Evaluation  use knowledge critically to assess information

15 Bloom’s taxonomy of learning 1.Basic knowledge  memorizing facts, processes 2.Secondary comprehension  understanding & illustrating facts 3.Application  generalizing to other situations 4.Analysis  understanding why, breaking the problem down What do we need to know to make that calculation? Rates of growth per tree, number of trees per area, amount of C per tree, etc. What factors control rates of forest growth, and do how they vary across landscapes? 5.Synthesis  making connections 6.Evaluation  use knowledge critically to assess information

16 Bloom’s taxonomy of learning 1.Basic knowledge  memorizing facts, processes 2.Secondary comprehension  understanding & illustrating facts 3.Application  generalizing to other situations 4.Analysis  understanding why, breaking the problem down 5.Synthesis  making connections Elevated CO 2 causes global warming; humans are releasing CO 2 with fossil fuel combustion. How do rates of CO 2 uptake from forests compare to human release of CO 2 from fossil fuel burning? Enough to decrease warming? 6.Evaluation  use knowledge critically to assess information

17 Bloom’s taxonomy of learning 1.Basic knowledge  memorizing facts, processes 2.Secondary comprehension  understanding & illustrating facts 3.Application  generalizing to other situations 4.Analysis  understanding why, breaking the problem down 5.Synthesis  making connections 6.Evaluation  use knowledge critically to assess information Will cutting down old growth forests help suck fossil fuel CO 2 out of the atmosphere?

18 Expectations 1. You will all get A’s. 2. You want to learn. -Transition to upper-level courses: you will build on these skills throughout school – and career. -I’m here to help – as a facilitator, not “the sage on the stage” 3. You will be active learners. - Same approach doesn’t work for everyone. Don’t understand? Come ask! - Reciprocal effort. - Learn from mistakes. 4. Expect excellence, but not perfection. Something you like or don’t like? Please tell me!

19 Ecology and Evolution Ecological interactions determine the fitness of organisms in an evolutionary context. Evolution of organisms influence the ecological interactions in which they partake.

20 Biodiversity The different forms of life on Earth, in terms of genetic diversity within species, species diversity in communities (and globally), and diversity of ecosystems across landscapes.

21 Assessment A - Strongly agree B – somewhat agreeC - don’t knowD – somewhat disagreeE – strongly disagree 1. While there is some evidence for evolution, it is just a theory that has not been well proven. 2. Intelligent design provides a scientifically credible alternative to evolution. 3. Evolution cannot explain the presence of complex structures in organisms, such as eyes or flagella, that must operate as a unit. 4. While it is clear that evolution can explain changes within species, it cannot explain how new species or groups of species may have arisen. 5. While Darwin proposed natural selection as the mechanism of evolution, he didn’t know how heritability occurred. 6. Natural selection is the only mechanism by which evolution occurs. 7. Dolphins are better adapted to their environment than are alligators because the former are more recently evolved. 8. Evolution favors the development of more complex organisms over simpler organisms. 9. Scientists continue to debate details of evolution, but there’s no scientific controversy about whether or not it occurs. 10. A scientific concept, such as evolution, does not become a “theory” until it is supported by an overwhelming body of evidence.

22 Intro to the biology series: What’s covered in 204, 205, 206?

23 Population Ecosystem Community Evolution BI 204 BI 206 BI 205 Fig 1.2 Biological Hierarchy BI 204

24 Ecology The study of interactions between organisms and their environment, both abiotic and biotic. What adaptations allow organisms to survive and reproduce in a complex world?

25 Physiological ecology (e.g., temp., moisture)

26 Population ecology: Abundance, distribution, and reproduction

27 mutualism predation, herbivory, parasitism Community composition and diversity Community ecology (species interactions) Competition

28 Ecosystem ecology: element cycles

29 How many species? Global diversity – total number of species of different taxa in the whole world. About 1.65 million identified. Estimates range up to about 30 million species. Global Biodiversity Assessment 1995

30 How are they related? http://cyberpingui.free.fr/humour/evolution-white.jpg

31 How are they related?


Download ppt "Still trying to get in? 1.Make sure you’re on the Banner waiting list. 2.If you think you might drop, please do so soon. 3.For general registration questions,"

Similar presentations


Ads by Google