Presentation is loading. Please wait.

Presentation is loading. Please wait.

POLYNOMIAL REGRESSION MODELS. One-Variable Polynomial Models Recall with one variable the first step is to plot the y values vs. x to assist in hypothesizing.

Similar presentations


Presentation on theme: "POLYNOMIAL REGRESSION MODELS. One-Variable Polynomial Models Recall with one variable the first step is to plot the y values vs. x to assist in hypothesizing."— Presentation transcript:

1 POLYNOMIAL REGRESSION MODELS

2 One-Variable Polynomial Models Recall with one variable the first step is to plot the y values vs. x to assist in hypothesizing the form of the model. Polynomial model in one variable is: y =  0 +  1 x +  2 x 2 +  3 x 3 + …  p x p +  Usually p  3

3 Example A study was done to determine the relationship between average daily gas usage (as measured in therms) for a 3000 sq. ft. home and average daily temperature in Santa Ana, Ca. Results: TempTherms 54.03.68 54.54.72 55.95.11 56.84.35 60.13.19 63.31.94 67.31.35 71.60.63 72.50.91 70.90.65 66.00.84 59.01.25

4 Scatterplot The scatter plot of this data appears to show that a quadratic model might fit better. So, hypothesize: y = β 0 + β 1 x + β 2 x 2 + ε

5 2.Enter Temp^2 in C1 In C2 enter = B2^2 Drag to C3:C13 1.Cut Column B (Therms) and Insert Cut Cells to Column A. 3.Tools/ Data Analysis/ Regression X Range: Columns B and C

6 The regression equation y = 59.09323-1.59526x+.010895x 2 Low p-value High R 2 and Adj. R 2

7 Polynomial Models With More Than One Variable Could have interaction –Interaction between x 1 and x 2 is represented by an x 1 x 2 term. Example:Example: Therms may be a quadratic function of Temperature, Rainfall, and include interaction Two variable quadratic model with interaction: y =  0 +  1 x 1 +  2 x 2 +  3 x 1 2 +  4 x 2 2 +  5 x 1 x 2 +  Solve using usual regression techniques.

8 =B2^2 =C2^2 =B2*C2 Drag D2:F2 to D13:F13 Enter contiguous X-Range

9 Regression Equation: y = 152.3059 - 4.212x 1 - 37.972x 2 +.029x 1 2 + 2.508x 2 2 +.547x 1 x 2 Low p-value High R 2 p-values for t-tests

10 Interpretation of t-tests in this model.Because x 1 is correlated with x 1 2, x 2 is correlated with x 2 2, and both x 1 and x 2 are correlated with x 1 x 2, the t-tests may not show that these terms, independently, are significant in this model. –Multicollinearity –If we need to interpret the meaning of each coefficient (each  ) – this multicollinearity may not allow us to do it –If our objective is to predict values of y – that’s okay This is a typical use of regression

11 Review One variable models –Graph first to help in hypothesizing model More than one variable models –May or may not wish to hypothesize interaction (x 1 x 2 ) Perform regression analysis in usual way –Difficult to interpret estimates for  ’s –Low Significance F – use model for prediction


Download ppt "POLYNOMIAL REGRESSION MODELS. One-Variable Polynomial Models Recall with one variable the first step is to plot the y values vs. x to assist in hypothesizing."

Similar presentations


Ads by Google