Presentation is loading. Please wait.

Presentation is loading. Please wait.

Maximum Entropy, Maximum Entropy Production and their Application to Physics and Biology Prof. Roderick C. Dewar Research School of Biological Sciences.

Similar presentations


Presentation on theme: "Maximum Entropy, Maximum Entropy Production and their Application to Physics and Biology Prof. Roderick C. Dewar Research School of Biological Sciences."— Presentation transcript:

1 Maximum Entropy, Maximum Entropy Production and their Application to Physics and Biology Prof. Roderick C. Dewar Research School of Biological Sciences The Australian National University

2 Part 1: Maximum Entropy (MaxEnt) – an overview Part 2: Applying MaxEnt to ecology  Part 3: Maximum Entropy Production (MEP) Part 4: Applying MEP to physics & biology Dewar & Maritan (in preparation)

3 The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility  MEP (steady states) Max irreversibility  Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)

4 The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility  MEP (steady states) Max irreversibility  Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)

5 Poleward heat transport SW LW Latitudinal heat transport H = ? 170 W m -2 300 W m -2 TT

6 Cold plate, T c Hot plate, T h Ra < 1760 conduction TT Cold plate, T c Hot plate, T h Ra > 1760 convection H = ? Turbulent heat flow (Raleigh-Bénard convection)

7 F sw F lw + H + E C, H 2 0, O 2, N  T,  Ecosystem energy & mass fluxes

8 From among all those possible flux patterns compatible with the constraints, which one is reproducibly selected?

9 The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility  MEP (steady states) Max irreversibility  Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)

10 t = 0 t = τ Γ = microscopic path of system + environment Path entropy = path Γ followed in reverse

11 t = 0 t = τ Γ = microscopic path of system + environment Path entropy Irreversibility = path Γ followed in reverse (equilibrium)

12 I(p) is finite, t = 0 t = τ Γ = microscopic path of system + environment Path entropy Irreversibility Physical constraints C = path Γ followed in reverse (equilibrium) i.e. macroscopic fluxes can run in reverse

13  possible flux 1. Maximise subject to  normalisation  physical constraints C 2. Maximise w.r.t. F  reproducible flux w.r.t. Step 1  To select F, maximise H in two steps …

14 Step 1

15  possible flux 1. Maximise subject to  normalisation  physical constraints C w.r.t. if then if then The Kuhn-Tucker optimisation conditions:

16 Step 2

17 2. Maximise w.r.t. F  reproducible F λ = F = 0 i.e. equilibrium When μ = 0 we get Therefore non-equilibrium systems (F  0) must satisfy μ > 0 i.e. maximum irreversibility F  0 max S max I (cf. Boltzmann)

18 The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility  MEP (steady states) Max irreversibility  Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)

19 SW LW Latitudinal heat transport F = ? 170 W m -2 300 W m -2 TT F  0 t = 0t = τ micropath Γ

20  Γ p Γ = 1 normalisation  Γ p Γ f Γ = F flux  Ω  Γ p Γ u Γ = u density  V  u Γ /  t = –  f Γ conservation law Max H : Subject to : (Dewar 2003) FΩFΩ uVuV Max I : F  0 max H max I = entropy production MEP

21 heat flow   (1/T) stress  strain mass flow   (-μ/T) reaction rate  affinity EP Γ =  V Σ flux Γ  force Thermodynamic EP emerges from constraint of energy & mass balance.... from energy balance from mass balance.... and this is why MEP is so general Dewar (2003)

22 The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility  MEP (steady states) Max irreversibility  Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)

23 ‘Bubble dynamics’ (cf. Jaynes 1996) Macroscopic state of the system : ‘bubble’ of probability at time t in the space of macrostates X

24 Maximum irreversibility  macroscopic dynamics System statewith probability can be expressed in terms of p(X,t) and v(X,t) Max I w.r.t. v(X,t) subject to constraints  reproducible v(X,t)  temporal evolution of p(X,t) under C Probability current: Conservation of probability : Conditional state velocity : at time t Path probability:

25 Maximise I w.r.t. v(X, t) subject to Onsager driftdiffusion Example: Gaussian fluctuations (near equilibrium) t t +dt Non-eq. forcing  Fokker-Planck equation:  p/  t = -  (pv)

26 How does the MEP bubble evolve? Gaussian ‘Entropy hill function’ : Fluctuation- driven climb up entropy hill Bubble size adjusts to local entropy curvature

27 ‘Entropy hill function’ : Fluctuation- driven climb up entropy hill Bubble size adjusts to local entropy curvature Example : How does the MEP bubble evolve?

28 Summary of Lecture 3 … Boltzmann Gibbs Shannon Jaynes MaxEnt (reproducible behaviour)  systems arbitrarily far from equilibrium obey maximum irreversibility (Max I) Max I governs selection of non- equilibrium steady states (MEP) and macroscopic dynamics (e.g. Fokker-Planck)


Download ppt "Maximum Entropy, Maximum Entropy Production and their Application to Physics and Biology Prof. Roderick C. Dewar Research School of Biological Sciences."

Similar presentations


Ads by Google