Download presentation
Presentation is loading. Please wait.
1
Maximum Entropy, Maximum Entropy Production and their Application to Physics and Biology Prof. Roderick C. Dewar Research School of Biological Sciences The Australian National University
2
Part 1: Maximum Entropy (MaxEnt) – an overview Part 2: Applying MaxEnt to ecology Part 3: Maximum Entropy Production (MEP) Part 4: Applying MEP to physics & biology Dewar & Maritan (in preparation)
3
The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility MEP (steady states) Max irreversibility Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)
4
The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility MEP (steady states) Max irreversibility Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)
5
Poleward heat transport SW LW Latitudinal heat transport H = ? 170 W m -2 300 W m -2 TT
6
Cold plate, T c Hot plate, T h Ra < 1760 conduction TT Cold plate, T c Hot plate, T h Ra > 1760 convection H = ? Turbulent heat flow (Raleigh-Bénard convection)
7
F sw F lw + H + E C, H 2 0, O 2, N T, Ecosystem energy & mass fluxes
8
From among all those possible flux patterns compatible with the constraints, which one is reproducibly selected?
9
The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility MEP (steady states) Max irreversibility Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)
10
t = 0 t = τ Γ = microscopic path of system + environment Path entropy = path Γ followed in reverse
11
t = 0 t = τ Γ = microscopic path of system + environment Path entropy Irreversibility = path Γ followed in reverse (equilibrium)
12
I(p) is finite, t = 0 t = τ Γ = microscopic path of system + environment Path entropy Irreversibility Physical constraints C = path Γ followed in reverse (equilibrium) i.e. macroscopic fluxes can run in reverse
13
possible flux 1. Maximise subject to normalisation physical constraints C 2. Maximise w.r.t. F reproducible flux w.r.t. Step 1 To select F, maximise H in two steps …
14
Step 1
15
possible flux 1. Maximise subject to normalisation physical constraints C w.r.t. if then if then The Kuhn-Tucker optimisation conditions:
16
Step 2
17
2. Maximise w.r.t. F reproducible F λ = F = 0 i.e. equilibrium When μ = 0 we get Therefore non-equilibrium systems (F 0) must satisfy μ > 0 i.e. maximum irreversibility F 0 max S max I (cf. Boltzmann)
18
The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility MEP (steady states) Max irreversibility Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)
19
SW LW Latitudinal heat transport F = ? 170 W m -2 300 W m -2 TT F 0 t = 0t = τ micropath Γ
20
Γ p Γ = 1 normalisation Γ p Γ f Γ = F flux Ω Γ p Γ u Γ = u density V u Γ / t = – f Γ conservation law Max H : Subject to : (Dewar 2003) FΩFΩ uVuV Max I : F 0 max H max I = entropy production MEP
21
heat flow (1/T) stress strain mass flow (-μ/T) reaction rate affinity EP Γ = V Σ flux Γ force Thermodynamic EP emerges from constraint of energy & mass balance.... from energy balance from mass balance.... and this is why MEP is so general Dewar (2003)
22
The problem: to predict non-equilibrium fluxes from given constraints The solution: apply MaxEnt to microscopic paths (Jaynes) - irreversibility in information-theoretical terms - MaxEnt implies maximum irreversibility Max irreversibility MEP (steady states) Max irreversibility Fokker-Planck equation (dynamics) Part 3: Maximum Entropy Production (MEP)
23
‘Bubble dynamics’ (cf. Jaynes 1996) Macroscopic state of the system : ‘bubble’ of probability at time t in the space of macrostates X
24
Maximum irreversibility macroscopic dynamics System statewith probability can be expressed in terms of p(X,t) and v(X,t) Max I w.r.t. v(X,t) subject to constraints reproducible v(X,t) temporal evolution of p(X,t) under C Probability current: Conservation of probability : Conditional state velocity : at time t Path probability:
25
Maximise I w.r.t. v(X, t) subject to Onsager driftdiffusion Example: Gaussian fluctuations (near equilibrium) t t +dt Non-eq. forcing Fokker-Planck equation: p/ t = - (pv)
26
How does the MEP bubble evolve? Gaussian ‘Entropy hill function’ : Fluctuation- driven climb up entropy hill Bubble size adjusts to local entropy curvature
27
‘Entropy hill function’ : Fluctuation- driven climb up entropy hill Bubble size adjusts to local entropy curvature Example : How does the MEP bubble evolve?
28
Summary of Lecture 3 … Boltzmann Gibbs Shannon Jaynes MaxEnt (reproducible behaviour) systems arbitrarily far from equilibrium obey maximum irreversibility (Max I) Max I governs selection of non- equilibrium steady states (MEP) and macroscopic dynamics (e.g. Fokker-Planck)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.