Download presentation
Presentation is loading. Please wait.
1
1 COMBINATORIAL OPTIMIZATION : an instance s : Solutions Set f : s → Cost function to minimize (Max) Find s* S s.t. f ( s* ) f ( s ), s S ( MIN) or f ( s* ) f ( s ), s S ( MAX)
2
2 Local Search ( LS) Neighborhood structure : - i solution - N : S → i→ N ( i ) S N ( i ) = ¨ near ¨ to i solutions ĩ is a local minimum if f ( i ) f ( j ), j N ( i ) ĩ is a local maximum if f ( i ) f ( j ), j N ( i )
3
3 Local Search Algorithm Define a neighborhood N ( ) Initial solution = Find a solution ΄ N ( ) improving the cost : = ´ If ´ does not exist STOP ( local optimum)
4
4 The local search algorithm
5
5 Examples The Traveling Salesman Problem 2 - opt, 3 – opt,..., k – opt 2 - exchange
6
6
7
7 Examples The Bipartitioning of a weighted graph G ( V, E, W ), = 2 n. Find partitions A, B of V with = and Minimizing f ( A, B ) =
8
8 Graph Bipartitioning
9
9 Search strategies in LS First improvement Best improvement Worst improvement
10
10 The Quadratic Assignment Problem (QAP) n locations : distance n facilities: flow f ij π(i)=k: facility i location k minimize the local cost
11
11 The Quadratic Assignment Problem (QAP) n locations : distance n facilities: flow f ij π(i)=k: facility i location k minimize the total cost
12
12 The QAP 2-exchange: π=(π(1),...,π(i),...,π(j),...π(n)) π ij =(π(1),...,π(j),...,π(i),...π(n)) N(π)=(n*(n-1))/2
13
13 The QAP: an example π=3 1 2 5 4 6 2-exch. π ij =3 4 2 5 1 6 6 5 1 3 4 2 6 5 1 4 3 2 locations
14
14 Traveling Salesman Problem (2-exchange)
15
15 Bipartitioning weighted graph G(V,E) 2-exchange
16
16 Particular cases(Bipartitioning) h/2
17
17 K-densest and k-lightest
18
18 Results (2-exchange) m n-m
19
19 The Local Search: The MIS example : The maximum Independent Set problem in a graph G(V,E)
20
20 The MIS by the Local Search Solution coding : Function :
21
21 Neighborhood : FLIP
22
22 LS Drawbacks Local optimum “good“ neighborhoods exploration strategies Performances guarantee ? Parallelization ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.