Download presentation
Presentation is loading. Please wait.
3
Crime? FBI records violent crime, z x y z [1,] 58035 354.559 46 [2,] 120100 351.593 998 [3,] 102743 339.815 615 [4,] 117242 321.533 168 [5,] 137538 311.839 169 [6,] 101400 305.200 1095 [7,] 1000007 304.206 2439 [8,] 58047 292.977 204 [9,] 74900 285.698 199. ; [21]
4
Total sum of squares (TSS) TSS = (Y i - ) 2 = 44829 i = A + B 1 X i1 + B 2 X i2 Residual sum of squares (RSS) RSS = (Y i - i ) 2 = 38656 Regression sum of squares (RegSS) RegSS = ( i - ) 2 = 6173
5
Analysis of variance TSS = RegSS + RSS zz = z/x ANOVA Table. via anova(lm(y~log10(x) + zz) Response: y Df Sum Sq Mean Sq F value Pr(>F) log10(x) 1 6173 6172.6 2.8883 0.1064 zz 1 189 188.6 0.0883 0.7698 Residuals 18 38467 2137.1
6
Call: lm(formula = y ~ log10(x) + zz) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 78.830 124.363 0.634 0.534 log10(x) 38.554 26.067 1.479 0.156 zz 1.257 4.232 0.297 0.770 Residual standard error: 46.23 on 18 degrees of freedom Multiple R-squared: 0.1419, Adjusted R-squared: 0.04656 F-statistic: 1.488 on 2 and 18 DF, p-value: 0.2523 Where do these values come from?
7
Statistical inference. Y i = + x i + i x_i constant E ( i ) = 0 E (Y i ) = + x i V( i ) = 2 V(Y i ) = 2 Normality. i ~ N(0, 2 ) Y i ~ N( + x i, 2 ) { i }~ IN(0, 2 ) {Y i }~ IN( + x i, 2 )
8
N( , 2 ) has density 1/( (2 ) ) exp{-(y- )2 /(2 2 )} Joint density [1/( (2 ) ) exp{-(Y i - )2 /(2 2 )}] log-likelihood l( , 2 ) = [-.5log 2 - (Y i - ) 2 /(2 2 ) mles S Y 2 = (Y i - ) 2 /n
9
B = (Y i - )( x i - )/ ( x i - ) 2 = Y i ( i - ) / ( x i - ) 2 = m i Y i constant coefficients = + i ( x i - )/ ( x i - ) 2 E(B) = V(B) = 2 / (x i - ) 2 B is normally distributed with these parameters
10
For A use matrix formulation y = X + X is constant E = 0 V( ) = 2 I Normal equations X'Xb = X'y b = (X'X) -1 X'y if inverse exists = + (X'X) -1 X' E(b) = V(b) = 2 (X'X) -1 b is normal with these parameters OR write Y i = + (x i - ) + i
11
Distributions. normal t chi-squared F For formulas and discussion see Appendix D (on website)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.