Download presentation
Presentation is loading. Please wait.
1
Quantum control using diabatic and adibatic transitions Diego A. Wisniacki University of Buenos Aires
2
Colaboradores-Referencias Colaborators Gustavo Murgida (UBA) Pablo Tamborenea (UBA) Short version ---> PRL 07, cond-mat/0703192 APS ICCMSE
3
Outline Introduction The system: quasi-one-dimensional quantum dot with 2 e inside Landau- Zener transitions in our system The method: traveling in the spectra Results Final Remarks
4
Introduction
6
Desired state
7
Introduction Desired state
8
Introduction Main idea of our work
9
Introduction Main idea of our work To travel in the spectra of eigenenergies
10
Introduction Main idea of our work To travel in the spectra of eigenenergies
11
Introduction Main idea of our work To travel in the spectra of eigenenergies
12
Introduction Main idea of our work To travel in the spectra of eigenenergies
13
Introduction To navigate the spectra
14
Introduction To navigate the spectra
15
Introduction To navigate the spectra
16
The system Quasi-one-dimensional quantum dot:
17
The system Quasi-one-dimensional quantum dot: Confining potential: doble quantum well filled with 2 e
18
The system Quasi-one-dimensional quantum dot: Confining potential: doble quantum well filled with 2 e
19
The system Quasi-one-dimensional quantum dot: Confining potential: doble quantum well filled with 2 e
20
Colaboradores-Referencias The system Time dependent electric field Coulombian interaction The Hamiltonian of the system: Note: no spin term-we assume total spin wavefunction: singlet
21
The system PRE 01 Fendrik, Sanchez,Tamborenea Interaction induce chaos Nearest neighbor spacing distribution System: 1 well, 2 e
22
Colaboradores-Referencias The system We solve numerically the time independent Schroeringer eq. Electric field is considered as a parameter Characteristics of the spectrum (eigenfunctions and eigenvalues)
23
The system Spectra
24
The system Spectra lines
25
The system Spectra lines Avoided crossings
26
Colaboradores-Referencias The system delocalized e¯ in the right dot e¯ in the left dot
27
Landau-Zener transitions in our model LZ model
28
Landau-Zener transitions in our model LZ model Linear functions
29
Landau-Zener transitions in our model LZ model Linear functions hyperbolas
30
Landau-Zener transitions in our model LZ model Probability to remain in the state 1 Probability to jump to the state 2 if
31
Landau-Zener transitions in our model LZ model Slow transitions Fast transitions
32
Colaboradores-Referencias Landau-Zener transitions in our model E(t) We study the prob. transition in several ac. For example: Full system 2 level system LZ prediction
33
The method: navigating the spectrum Choose the initial state and the desired final state in the spectra
34
The method: navigating the spectrum Choose the initial state and the desired final state in the spectra Find a path in the spectra
35
The method: navigating the spectrum We use adiabatic and rapid transitions to travel in the spectra Choose the initial state and the desired final state in the spectra Find a path in the spectra
36
The method: navigating the spectrum We use adiabatic and rapid transitions to travel in the spectra Choose the initial state and the desired final state in the spectra Find a path in the spectra Avoid adiabatic transitions in very small avoided crossings If it is posible try to make slow variations of the parameter
37
Results First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method)
38
Results First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu
39
Colaboradores-Referencias Results Second example: complex path
40
Colaboradores-Referencias Results Second example: complex path
41
Colaboradores-Referencias Results Second example: complex path
42
Colaboradores-Referencias Results Second example: complex path
43
Colaboradores-Referencias Results Second example: complex path
44
Colaboradores-Referencias Results Second example: complex path
45
Colaboradores-Referencias Results Second example: complex path
46
Colaboradores-Referencias Results Second example: complex path
47
Colaboradores-Referencias Results Second example: complex path
48
Colaboradores-Referencias Results Second example: complex path
49
Colaboradores-Referencias Results Second example: complex path
50
Colaboradores-Referencias Results Third example: more complex path
51
Results
52
Colaboradores-Referencias Results Forth example: target state a coherent superposition
53
Colaboradores-Referencias Results Forth example: target state a coherent superposition
54
Colaboradores-Referencias Results Forth example: target state a coherent superposition
55
Colaboradores-Referencias Results Forth example: target state a coherent superposition
56
Colaboradores-Referencias Results Forth example: target state a coherent superposition
57
Colaboradores-Referencias Results Forth example: target state a coherent superposition
58
Colaboradores-Referencias Results Forth example: target state a coherent superposition
59
Colaboradores-Referencias Results Forth example: target state a coherent superposition
60
Colaboradores-Referencias The method: questions We need well defined avoided crossings a/R Stadium billiard Is our method generic? Is our method experimentally possible?
61
Colaboradores-Referencias Final Remarks We found a method to control quantum systems Our method works well: With our method it is posible to travel in the spectra of the system We can control several aspects of the wave function (localization of the e¯, etc).
62
Colaboradores-Referencias Final Remarks We can obtain a combination of adiabatic states Control of chaotic systems Decoherence??? Next step???.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.