Download presentation
Presentation is loading. Please wait.
1
RHIC physics and AdS/CFT Amos Yarom, Munich TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA A A A A A A A together with: S. Gubser and S. Pufu
2
Overview The quark gluon plasma Energy g YM 1 ~170 MeV ?
3
Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT AdS/CFT J. Maldacena
4
Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT ?
5
Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT Energy loss of a moving quark
6
Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT Energy loss of a moving quark
7
Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT Energy loss of a moving quark Summary
8
The quark gluon plasma at RHIC RELATIVISTICRELATIVISTIC HEAVYHEAVY IONION COLLIDERCOLLIDER
9
Jet quenching 197 × pTpT
10
Jet quenching (Phenix, 2005)
11
Friction coefficient for QCD plasma
12
N=4 SYM plasma via AdS/CFT AdS/CFT J. Maldacena AdS 5 CFT Empty AdS 5 Vacuum L4/’2L4/’2 g YM 2 N L 3 /2 G 5 N2N2 J. Maldacena hep-th/9711200
13
T>0 N=4 SYM plasma via AdS/CFT AdS 5 CFT AdS 5 BH Thermal state L4/’2L4/’2 g YM 2 N L 3 /2 G 5 N2N2 E. Witten hep-th/9802150 Horizon radiusTemperature Empty AdS 5 Vacuum J. Maldacena hep-th/9711200
14
AdS Black holes z0z0 z 0 x1x1 x i, t AdS 5 CFT AdS 5 BH Thermal state L4/’2L4/’2 g YM 2 N L 3 /2 G 5 N2N2 E. Witten hep-th/9802150 Horizon radiusTemperature z0z0 1/ T
15
AdS/CFT J. Maldacena Friction coefficient AdS 5 CFT J. Maldacena hep-th/9803002 Massive parton Endpoints of an open string z0z0 z 0 ? (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)
16
Friction coefficient AdS 5 CFT J. Maldacena hep-th/9803002 Massive parton Endpoints of an open string z0z0 z 0 ? (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)
17
Friction coefficient z0z0 z 0 F F (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)
18
Friction coefficient AdS/CFT J. Maldacena (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)
19
Measurables which have been compared Friction coefficient Energy density Shear viscosity Jet quenching parameter (Policastro, Son, Starinets, 2001) (Liu, Rajagopal, Wiedemann, 2006) (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) (Gubser, Klebanov, Peet, 1996)
20
Measuring jets
21
22
Measuring di-jets
23
Measuring di-jets (STAR, 0701069)
24
Measuring di-jets (STAR, 0701069) =
25
Measuring di-jets (STAR, 0701069) »
26
Creation of sound waves (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)
27
Creation of sound waves (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)
28
Mach cones and di-jets (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006) »
29
Mach cones in N=4 SYM AdS 5 CFT z0z0 z 0
30
The energy momentum tensor AdS 5 CFT AdS black hole Metric fluctuations z0z0 z 0 G mn z,k)
31
The energy momentum tensor z0z0 z 0
32
Gauge choice Cylindrical symmetry Tensor modes Vector modes
33
The energy momentum tensor Tensor modes Vector modes + first order constraint
34
The energy momentum tensor Tensor modes Vector modes + first order constraint Scalar modes + 3 first order constraints
35
Energy density for v=3/4 Over energy Under energy
36
v=0.75 v=0.58 v=0.25
37
Small momentum approximations 1-3v 2 > 0 (subsonic)
38
Small momentum approximations 1-3v 2 > 0 (subsonic) Re(K 1 ) Im(K 1 ) v decreases v increases X 1 > 0 X 1 < 0
39
Small momentum approximations 1-3v 2 < 0 (supersonic) Re(K 1 ) Im(K 1 ) 1-3v 2 = 0 v increases ? ? X 1 > 0 X 1 < 0 X1X1
40
Small momentum approximations 1-3v 2 < 0 (supersonic) 1-3v 2 > 0 (subsonic)
41
Small momentum approximations
42
Re(K 1 ) Im(K 1 ) c s 2 =1/3 s =1/3
43
Multi-scale analysis Large distances – linear hydrodynamic picture valid Intermediate distances – nonlinear hydrodynamics Short momenta – Strong dissipative effects
44
Energy density for v=3/4
45 0
46
v=0.75 v=0.58 v=0.25
47
Large momentum approximations
52
Wakes
53
Mach cones, wakes and di-jets (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)
54
Mach cones, wakes and di-jets (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006) (STAR, 0701069)
55
The Poynting vector z0z0 z 0
56
V=0.25 S1S1 S?S? V=0.58 V=0.75 (Gubser, Pufu, AY, 2007)
57
Re(K 1 ) Im(K 1 ) Small momentum asymptotics Sound Waves ? (Gubser, Pufu, AY, 2007) X1X1
58
Small momentum asymptotics (Gubser, Pufu, AY, 2007)
59
The poynting vector V=0.25 S1S1 S?S? V=0.58 V=0.75 (Gubser, Pufu, AY, 2007)
60
Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, 2006 Gubser, Pufu, AY, 2007)
61
Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, 2006 Gubser, Pufu, AY, 2007) z0z0 z 0 FF ? Just been calculated
62
Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, 2006, Gubser, Pufu, AY, 2007)
63
Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, 2006, Gubser, Pufu, AY, 2007) =
64
Universality (Gubser, AY,2007) z0z0 z 0
65
Universality (Gubser, AY, 2007) z0z0 0 z
66
Summary N=4 SYM plasma exhibits a Mach cone and a wake at large distances, where the hydrodynamic approximation is valid. The laminar wake behind the quark is a universal feature of theories with string duals, and the ratio of energy carried by the wake to the drag force is 1:v 2. This wake is difficult to reconcile with current experimental data.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.