Download presentation
Presentation is loading. Please wait.
1
String Matching String matching: definition of the problem (text,pattern) depends on what we have: text or patterns Exact matching: Approximate matching: 1 pattern ---> The algorithm depends on |p| and | | k patterns ---> The algorithm depends on k, |p| and | | The text ----> Data structure for the text (suffix tree,...) The patterns ---> Data structures for the patterns Dynamic programming Sequence alignment (pairwise and multiple) Extensions Regular Expressions Probabilistic search: Sequence assembly: hash algorithm Hidden Markov Models
2
Bioinformatics Pairwise and multiple alignment
3
Pairwise alignment Edit distance: match=0mismatch=1 indel=1 d(A,CTAC)+1 d(AC,CTACT)=minimum d(A,CTA)….+1 d(AC,CTA)+1 Similarity: match=1 mismatch=-1indel=-2 s(A,CTAC)-2 s(AC,CTACT)=maximum s(A,CTA) 1 s(AC,CTA)-2 - +
4
C T A C T A C T A C G T A C T C T A C T A C T A C G T 0 -2-4-6 … A-2 C-4 T-6 Similarity: match=1 mismatch=-1indel=-2 Pairwise alignment s(A,CTAC)-2 s(AC,CTACT)=maximum s(A,CTA) 1 s(AC,CTA)-2 - +
5
Pairwise alignment Connect to http://alggen.lsi.upc.es Links to TEACHING EMBER LePA
6
Multiple alignment alignment
7
A C A __ Pairwise to multiple alignment What happens with three strings? Let n be their lenght, then the cost becomes S3S3 S2S2 S1S1 O(n 3 )“O(2 3 )”“O(3 2 )” And with k strings? O(n k 2 k k 2 )
8
Multiple alignment Programs of multialignment use different heuristics: n Clustal (Progressive alignment) Clustal http://www.ebi.ac.uk/clustalw n TCoffee (Progressive alignment + data bases) TCoffee http://igs-server.cnrs-mrs.fr/Tcoffee_cgi/index.cgi n HMM (Hidden Markov Models)
9
Multiple alignment Connect to http://alggen.lsi.upc.es/ and follow the links TEACHING EMBER.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.