Presentation is loading. Please wait.

Presentation is loading. Please wait.

Number Systems and Codes Discussion D4.1. Number Systems Counting in Binary Positional Notation Hexadecimal Numbers Negative Numbers.

Similar presentations


Presentation on theme: "Number Systems and Codes Discussion D4.1. Number Systems Counting in Binary Positional Notation Hexadecimal Numbers Negative Numbers."— Presentation transcript:

1 Number Systems and Codes Discussion D4.1

2 Number Systems Counting in Binary Positional Notation Hexadecimal Numbers Negative Numbers

3 Counting in Binary Position:8421 0000000000 0001100011 0010200102 0011300113 0100401004 0101501015 0110601106 0111701117 1000810008 BINARY HEX

4 Counting in Binary Position:8421 1000810008 1001910019 1010A1010A 1011B1011B 1100C1100C 1101D1101D 1110E1110E 1111F1111F BINARY HEX

5 Counting in Binary 128 64 32 16 8 4 2 1 0 0 1 1 0 1 0 0 52 1 0 1 0 0 0 1 1163 1 1 1 1 1 1 1 1 255 BINARY DEC

6 Positional Notation N = P 4 P 3 P 2 P 1 P 0 = P 4 b 4 + P 3 b 3 + P 2 b 2 + P 1 b 1 + P 0 b 0 584 10 = 5 x 10 2 + 8 x 10 1 + 4 x 10 0 = 500 + 80 + 4 = 584

7 Positional Notation N = P 4 P 3 P 2 P 1 P 0 = P 4 b 4 + P 3 b 3 + P 2 b 2 + P 1 b 1 + P 0 b 0 10110 2 = 1 x 2 4 + 0 x 2 3 + 1 x 2 2 + 1 x 2 1 + 0 x 2 0 = 16 + 0 + 4 + 2 + 0 = 22 10 Binary

8 Positional Notation N = P 4 P 3 P 2 P 1 P 0 = P 4 b 4 + P 3 b 3 + P 2 b 2 + P 1 b 1 + P 0 b 0 3AF 16 = 3 x 16 2 + A x 16 1 + F x 16 0 = 3 x 256 + 10 x 16 + 15 x 1 = 768 + 160 + 15 = 943 10 Hex

9 Binary Hex 0110 1010 1000 6A86A8 F5 C 1111 0101 1100

10 Questions What is the decimal value of 243 5 ? 2 x 5 2 +4 x 5+3 = 50+20+3 = 73

11 Negative Numbers Subtract by adding 73 -35 38 10’s complement 73 +65 138 Ignore carry

12 Negative Numbers 10’s complement : Subtract from 100 100 -35 65 Take 9’s complement and add 1 99 -35 64 +1 65

13 Negative Numbers 2’s complement: Subtract from 100000000 01001101 10110011 Take 1’s complement and add 1 11111111 -01001101 10110010 +1 10110011

14 Finding 2’s Complement 0 1 0 1 1 0 0 0 Copy all bits to first 1 2’s complement 0001 Complement remaining bits 0101

15 Negative Number Take 2’s Complement 75 10 = 4B 16 = 01001011 -75 10 = B5 16 = 10110101 FF -4B B4 +1 B5

16 Negative Number Take 2’s Complement 1 10 = 01 16 = 00000001 -1 10 = FF 16 = 11111111 128 10 = 80 16 = 10000000 -128 10 = 80 16 = 10000000

17

18 Signed Numbers 4-bit: 8H = -8 to 7H = +7 1000 to 0111 8-bit: 80H = -128 to 7F = +127 16-bit: 8000H = -32,768 to 7FFFH = +32,767 32-bit: 80000000H = -2,147,483,648 to 7FFFFFFFH = +2,147,483,647

19 Questions What is the two’s complement of 00101100? 11010100

20 Questions What hex number represents the decimal number -40? 40 10 = 28 16 = 00101000 2 2’s comp 11011000 2 = D8 16

21 Gray Code Note that the least significant bit that can be changed without repeating a value is the bit that is changed 000001 010011 011010 100110 101111 110101 111100 Binary Gray Code

22 Binary-Coded Decimal (BCD) 10010101 Use 4-bit binary numbers 0000 – 1001 to represent the decimal digits, 0 – 9. Note that the six hex values A – F, 1010 – 1111, are NOT valid BCD values. Example: represents the hex value 95 16 = 149 10 However, as a BCD number it represents the decimal number 95.

23 Standard ASCII Codes


Download ppt "Number Systems and Codes Discussion D4.1. Number Systems Counting in Binary Positional Notation Hexadecimal Numbers Negative Numbers."

Similar presentations


Ads by Google