Download presentation
Presentation is loading. Please wait.
2
1
3
2
4
3 We start with a few argument forms, which we presume are valid, and we use these to demonstrate that other argument forms are valid. We demonstrate (show) that a given argument form is valid by deriving deriving (deducing) its conclusion from its premises using a few fundamental modes of reasoning.
5
4 –––––– we can employ modus ponens (MP) to derive the conclusion from the premises. ifthen if then –––––––––– P P Q Q R R S –––––– S Example Argument Form
6
5 P ; P Q ; Q R ; R S / S MP Q R S
7
6 we can employ modus tollens (MT) to derive the conclusion from the premises. Example Argument Form ifthen not not if then not –––––––––– not S R S Q R P Q –––––– P ––––––
8
7 SS; R S ; Q R ; P Q/ P MT RR QQ PP
9
8 we can employ a combination of MP and MT to derive the conclusion from the premises. ––––––– ––––––– S R S R T P T P Q ––––––––– Q Example Argument Form
10
9 SS ; R S; R T ; P T; P Q QQ MT RR MP TT MT PP MP QQ
11
10 argument : P ; P Q ; Q R ; R S ; / S 1.write down premises 2.write down “ :” conclusion (1)PPr (premise) (2)P QPr (3)Q RPr (4)R SPr (5) : Swhat one is trying to derive
12
11 (1)PPr(premise) (2)P QPr(premise) (3)Q RPr(premise) (4)R SPr(premise) (5) : S(goal) (6) Q (7) R (8) S 1,2,MP 3,6,MP 4,7,MP 3.Apply rules, as applicable, to available lines until goal is reached. follows from lines 1 and 2 by modus ponens follows from lines 3 and 6 by modus ponens follows from lines 4 and 7 by modus ponens
13
12 4.Box and Cancel (1)PPr (2)P QPr (3)Q RPr (4)R SPr (5) : S (6) Q1,2,MP (7) R3,6,MP (8) S4,7,MP DDDirect Derivation
14
13 argument : S ; R S ; Q R ; P R ; / P (1) SPr (2)R SPr (3)Q RPr (4)P QPr (5) : P (6) R (7) Q (8) P DD 1,2,MT 3,6,MT 4,7,MT
15
14 (1) SPr (2)R SPr (3) R TPr (4)P TPr (5) P QPr (6) : Q (7) R (8) T (9) P (10) Q DD argument : S ; R S ; R T ; P T ; P Q / Q 1,2,MT 3,7,MP 4,8,MT 5,9,MP
16
15 Modus Tollens –––––– Modus Ponens –––––– Modus Tollendo Ponens (1) –––––– Modus Tollendo Ponens (2) ––––––
17
16 (P&Q)(R S) (P&Q) (R S)P&Q ––––––––––––– RSRSRSRS PQP QPQP Q PPPP ––––––––– QQQQ ––––––
18
17 (P&Q)(R S) (P&Q) (R S) (R S) ––––––––––––– (P&Q) PQP QPQP Q QQQQ ––––––––– PPPP –––––– PQP QPQP QQ P valid argument BUT NOT an example of MT
19
18 these ten pennies are worth are the dime and ten pennies the same? are they the same in value? NO YES actually, in a very important sense, they are not the same in value! $2,000,000
20
19 (P&Q)(R S) (P&Q) (R S) (P&Q) ––––––––––––– RSRSRSRS PQP QPQP Q PPPP ––––––––– QQQQ ––––––
21
20 (P&Q)(R S) (P&Q) (R S) (R S) –––––––––––––P&Q PQP QPQP Q QQQQ ––––––––– PPPP ––––––
22
21
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.