Download presentation
Presentation is loading. Please wait.
1
HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope
3
Physics Goals Gamma-Ray Burst Studies –Detect GRBs > 25 GeV –Detect GRBs to z~1 –Quantum Gravity Probe AGN Studies –Monitor all AGN in fov –Detect AGN to z > 0.3 –Sensitivity to ~15 minute flares Discovery –Time domain astronomy at VH energies –New sources unseen at other wavelengths
4
VHE Astrophysics Energy range 10 GeV – 10 TeV Non thermal processes in the universe Particle acceleration Physics of extreme objects –Supernova remnants –Active galactic nuclei –Gamma ray bursts Fundamental Physics –Quantum gravity –Extragalactic background light –Dark Matter Unexplored energy range –Discoveries likely –New types of sources revealed
5
Active Galactic Nuclei Particle Jet Accretion Disk/torus Supermassive Black Hole 10 8-10 M sun Rotating magnetic field converts rotational energy of hole into kinetic energy. Shocks propagate along jets and accelerate particles. ~50 10 48 ergs/sec Highly variable in VHE band
6
Mrk 501 Longterm Variability
7
Doppler Boosting: II Energy is Boosted Time is Contracted e + e - suppressed
8
AGN Spectra
9
Gamma-Ray Bursts Discovered in 1960’s – VELA spy satellites at Los Alamos Intense bursts of -rays coming from seemingly random directions Last from milliseconds to 100’s of seconds Over >2500 observed to date Cosmological origin Most energetic phenomena known 10 ~54 ergs! Counterparts in other wavelengths (optical, radio, GeV, TeV?)
10
Gamma-Ray Burst Properties GRB Positions in Galactic Coordinates Spatial Distribution Duration Distribution
11
GRB Profiles 156040 2015020 8055 100400.5 Counts/second Seconds
12
GRBs: High Energy Emission BATSE is sensitive to 20 keV- 2 MeV photons EGRET is sensitive to 30 MeV – 30 GeV photons EGRET observed 6 GRBs with spark chambers 18 GeV photon
13
GRB Models Central Engine: hypernovae (death of a very massive star) neutron star -- neutron star merger black hole -- neutron star mergers Emission Spectra: fireball -- internal or external shocks convert energy into electromagnetic radiation.
14
Absorption of TeV Photons e+e+ e-e- ~eV ~TeV
15
The First Unidentified TeV Source HEGRA: Deep observation 113 hours of observation (3 years) 4.6 significance 30 mCrab strength Centered on Cygnus OB2 (dense region of young, massive stars) Possibly an extended source
16
TeV Catalog NameSourceTypeDiscovery Date/Group EGRET 3 rd. Catalog Grade TeV 0047−2518NGC 253Starburst2003/CangaroonoB TeV 0219+42483C66ABlazar1998/CrimeayesC- TeV 0535+2200Crab NebulaSNR1989/WhippleyesA (Milagro) TeV 0834−4500VelaSNR1997/CangaroonoC TeV 1121−6037Cen X-3Binary1999/DurhamyesC TeV 1104+3813Mrk 421Blazar1992/WhippleyesA (Milagro) TeV 1231+1224M87Radio Galaxy2003/HEGRAnoC TeV 1429+4240H1426+428Blazar2002/WhipplenoA TeV 1503−4157SN1006SNR1997/CangaroonoB TeV 1654+3946Mrk 501Blazar1995/WhipplenoA (Milagro) TeV 1710−4429PSR 1706−44SNR1995/CangaroonoA TeV 1712−3932RXJ1713.7−39SNR1999/CangaroonoB+ TeV 2000+65091ES1959+650Blazar1999/TAnoA TeV 2032+4131CygOB2OB assoc.2002/HEGRAyes†B TeV 2159−3014PKS2155−304Blazar1999/DurhamyesA TeV 2203+4217BL LacertaeBlazar2001/CrimeayesC TeV 2323+5849Cas ASNR1999/HEGRAnoB TeV 2347+51421ES2344+514Blazar1997/WhipplenoA Galactic PlaneMilky WayDiffuse2004/MilagroyesB (Milagro) † CygOB2 lies within the 95% error ellipse of the EGRET source 3EG J0233+4118 8 verified (A) sources, 5 B sources, 5 C sources 10 extragalactic source, 8 galactic Horan & Weekes 2003
17
VHE Sky Map Horan & Weekes 2003
18
EGRET Sky Map 270 sources (150 unidentified)
19
Current Status of VHE Astronomy Only 8 confirmed sources (89, 92, 2x95, 97, 2x99, 2002) Lack of sources due to: –Small field of view of ACTs –Low sensitivity of all-sky instruments Small source counts lead to poor understanding of VHE sources VHE GRBs inconclusive (Milagrito) HAWC – high sensitivity over entire sky –Detect many sources –Monitor transient sources –Discover VHE emission from GRBs –Limit/Measure effects of quantum gravity
20
HAWC: High Altitude Water Cherenkov Telescope
21
HAWC Performance Requirements Energy Threshold ~20 GeV GRBs visible to redshift ~1 Near known GRB energy AGN to redshift ~0.3 Large fov (~2 sr) / High duty cycle (~100%) GRBs prompt emission AGN transients Large Area / Good Background Rejection –High signal rate –Ability to detect Crab Nebula in single transit Moderate Energy Resolution (~40%) –Measure GRB spectra –Measure AGN flaring spectra
22
Effect of Altitude Approximation B Low Energy Threshold Requires High Altitude
23
EAS Particle Content Ngammas Nelectrons Primary Energy (GeV) Low Energy Threshold Requires Detection of Gamma Rays in EAS
24
HAWC Strawman Configuration 200m x 200m water Cherenkov detector Two layers of 8” PMTs on a 3 meter grid –Top layer under 1.5m water (trigger & angle) –Bottom layer under 6m water (energy & nature) Two altitudes investigated –4500 m (Tibet, China) –5200 m (Altacama desert Chile)
25
Effective Area vs. Energy
26
Event Reconstruction
28
Angular Resolution
29
CORSIKA: Energy Resolution
32
Energy Distribution of Fit Events Median Energy 180 GeV (Milagro ~3 TeV)
33
Gammas Protons Background Rejection Bottom Layer 30 GeV70 GeV230 GeV 20 GeV70 GeV 270 GeV
34
Background Rejection Uniformity Parameter nTop/cxPE > 4.3 Reject 70% of protons Accept 87% of gammas 1.6x improvement in sensitivity Gammas Protons
35
D.C. Sensitivity: Galactic Sources Crab Spectrum: dN/dE = 3.2x10 -7 E -2.49 –Milagro 0.002 (0.001) Hz raw (cut) rate –HAWC 0.220 (0.19) Hz raw (cut) rate –Whipple 0.025 Hz –Veritas 0.5 (.12) Hz raw (cut) rate Background rate 80 (24) Hz raw (cut) 4 /sqrt(day) raw data 6 /sqrt(day) cut data –120 /sqrt(year) 40 mCrab sensitivity (all sky) in one year –Whipple: 140 mCrab per source –VERITAS: 7 mCrab per source (15 sources/year)
36
Transient Sensitivity Mrk flares
37
Effect of IR Absorption on Distant Sources z = 0.03 z = 0.1 z = 0.2 z = 0.3 z = 0.0
38
Energy Distribution of Fit Events
39
AGN Sensitivity 1 Year
40
Gamma Ray Burst Sensitivity 50 events
41
Point Source Sensitivity
42
Survey Mode Sensitivity
43
Conclusions A large area, high altitude all sky VHE detector will: –Detect the Crab in a single transit –Detect AGN to z = 0.3 –Observe 15 minute flaring from AGN –Detect GRB emission at ~50 GeV –Detect GRBs at a redshift of ~1 –Detect 6-10 GRBs/year (EGRET 6 in 9 years) –Have excellent discovery potential Continuing work –Improve background rejection & event reconstruction Increase sensitivity by ~50% - 100%? Develop energy estimator –Detailed detector design (electronics, DAQ, infrastructure) –Reliable cost estimate needed (~$30M???) –Site survey
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.