Presentation is loading. Please wait.

Presentation is loading. Please wait.

France Télécom R&D Engineering for QoS and the limits of service differentiation Jim Roberts IWQoS June 2000.

Similar presentations


Presentation on theme: "France Télécom R&D Engineering for QoS and the limits of service differentiation Jim Roberts IWQoS June 2000."— Presentation transcript:

1 France Télécom R&D Engineering for QoS and the limits of service differentiation Jim Roberts (james.roberts@francetelecom.fr) IWQoS June 2000

2 France Télécom R&D quality of service transparency response time accessibility service model resource sharing priorities,... network engineering provisioning routing,... feasible technology a viable business model The central role of QoS

3 France Télécom R&D Engineering for QoS: a probabilistic point of view è statistical characterization of traffic ‡ notions of expected demand and random processes ‡ for packets, bursts, flows, aggregates è QoS in statistical terms ‡ transparency: Pr [packet loss], mean delay, Pr [delay > x],... ‡ response time: E [response time],... ‡ accessibility:Pr [blocking],... è QoS engineering, based on a three-way relationship: performance capacity demand

4 France Télécom R&D Outline è traffic characteristics è QoS engineering for streaming flows è QoS engineering for elastic traffic è service differentiation

5 France Télécom R&D Internet traffic is self-similar è a self-similar process ‡ variability at all time scales è due to: ‡ infinite variance of flow size ‡ TCP induced burstiness è a practical consequence ‡ difficult to characterize a traffic aggregate Ethernet traffic, Bellcore 1989

6 France Télécom R&D Traffic on a US backbone link (Thomson et al, 1997) è traffic intensity is predictable... è... and stationary in the busy hour

7 France Télécom R&D Traffic on a French backbone link è traffic intensity is predictable... è... and stationary in the busy hour 12h 18h 00h 06h tue wed thu fri sat sun mon

8 France Télécom R&D IP flows è a flow = one instance of a given application ‡ a "continuous flow" of packets ‡ basically two kinds of flow, streaming and elastic

9 France Télécom R&D IP flows è a flow = one instance of a given application ‡ a "continuous flow" of packets ‡ basically two kinds of flow, streaming and elastic è streaming flows ‡ audio and video, real time and playback ‡ rate and duration are intrinsic characteristics ‡ not rate adaptive (an assumption) ‡ QoS  negligible loss, delay, jitter

10 France Télécom R&D IP flows è a flow = one instance of a given application ‡ a "continuous flow" of packets ‡ basically two kinds of flow, streaming and elastic è streaming flows ‡ audio and video, real time and playback ‡ rate and duration are intrinsic characteristics ‡ not rate adaptive (an assumption) ‡ QoS  negligible loss, delay, jitter è elastic flows ‡ digital documents ( Web pages, files,...) ‡ rate and duration are measures of performance ‡ QoS  adequate throughput (response time)

11 France Télécom R&D Flow traffic characteristics è streaming flows ‡ constant or variable rate compressed audio (O[10 3 bps]) and video (O[10 6 bps]) ‡ highly variable duration ‡ a Poisson flow arrival process (?) variable rate video

12 France Télécom R&D Flow traffic characteristics è streaming flows ‡ constant or variable rate compressed audio (O[10 3 bps]) and video (O[10 6 bps]) ‡ highly variable duration ‡ a Poisson flow arrival process (?) è elastic flows ‡ infinite variance size distribution ‡ rate adaptive ‡ a Poisson flow arrival process (??) variable rate video

13 France Télécom R&D Modelling traffic demand è stream traffic demand ‡ arrival rate x bit rate x duration è elastic traffic demand ‡ arrival rate x size è a stationary process in the "busy hour" ‡ eg, Poisson flow arrivals, independent flow size busy hour traffic demand Mbit/s time of day

14 France Télécom R&D Outline è traffic characteristics è QoS engineering for streaming flows è QoS engineering for elastic traffic è service differentiation

15 France Télécom R&D Open loop control for streaming traffic è a "traffic contract" ‡ QoS guarantees rely on ‡ traffic descriptors + admission control + policing è time scale decomposition for performance analysis ‡ packet scale ‡ burst scale ‡ flow scale user-network interface network-network interface user-network interface

16 France Télécom R&D Packet scale: a superposition of constant rate flows è constant rate flows ‡ packet size/inter-packet interval = flow rate ‡ maximum packet size = MTU

17 France Télécom R&D Packet scale: a superposition of constant rate flows è constant rate flows ‡ packet size/inter-packet interval = flow rate ‡ maximum packet size = MTU è buffer size for negligible overflow? ‡ over all phase alignments... ‡...assuming independence between flows buffer size log Pr [saturation]

18 France Télécom R&D Packet scale: a superposition of constant rate flows è constant rate flows ‡ packet size/inter-packet interval = flow rate ‡ maximum packet size = MTU è buffer size for negligible overflow? ‡ over all phase alignments... ‡...assuming independence between flows è worst case assumptions: ‡ many low rate flows ‡ MTU-sized packets buffer size log Pr [saturation] increasing number, increasing pkt size

19 France Télécom R&D Packet scale: a superposition of constant rate flows è constant rate flows ‡ packet size/inter-packet interval = flow rate ‡ maximum packet size = MTU è buffer size for negligible overflow? ‡ over all phase alignments... ‡...assuming independence between flows è worst case assumptions: ‡ many low rate flows ‡ MTU-sized packets è  buffer sizing for M/D MTU /1 queue ‡ Pr [queue > x] ~ C e -r x buffer size log Pr [saturation] M/D MTU /1 increasing number, increasing pkt size

20 France Télécom R&D The "negligible jitter conjecture" è constant rate flows acquire jitter ‡ notably in multiplexer queues

21 France Télécom R&D The "negligible jitter conjecture" è constant rate flows acquire jitter ‡ notably in multiplexer queues è conjecture:  if all flows are initially CBR and in all queues:  flow rates < service rate ‡ they never acquire sufficient jitter to become worse for performance than a Poisson stream of MTU packets

22 France Télécom R&D The "negligible jitter conjecture" è constant rate flows acquire jitter ‡ notably in multiplexer queues è conjecture:  if all flows are initially CBR and in all queues:  flow rates < service rate ‡ they never acquire sufficient jitter to become worse for performance than a Poisson stream of MTU packets è M/D MTU /1 buffer sizing remains conservative

23 France Télécom R&D Burst scale: fluid queueing models è assume flows have an intantaneous rate ‡ eg, rate of on/off sources packets bursts arrival rate

24 France Télécom R&D Burst scale: fluid queueing models è assume flows have an intantaneous rate ‡ eg, rate of on/off sources è bufferless or buffered multiplexing?  Pr [arrival rate < service rate] <  ‡ E [arrival rate] < service rate packets bursts arrival rate

25 France Télécom R&D Pr [rate overload] log Pr [saturation] buffer size 0 0 Buffered multiplexing performance: impact of burst parameters

26 France Télécom R&D Buffered multiplexing performance: impact of burst parameters log Pr [saturation] buffer size 0 0 burst length shorter longer

27 France Télécom R&D Buffered multiplexing performance: impact of burst parameters burst length less variable more variable log Pr [saturation] buffer size 0 0

28 France Télécom R&D Buffered multiplexing performance: impact of burst parameters burst length short range dependence long range dependence log Pr [saturation] buffer size 0 0

29 France Télécom R&D Choice of token bucket parameters? r b è the token bucket is a virtual queue ‡ service rate r ‡ buffer size b

30 France Télécom R&D Choice of token bucket parameters? r b è the token bucket is a virtual queue ‡ service rate r ‡ buffer size b è non-conformance depends on ‡ burst size and variability ‡ and long range dependence b' non- conformance probability b

31 France Télécom R&D Choice of token bucket parameters? r b è the token bucket is a virtual queue ‡ service rate r ‡ buffer size b è non-conformance depends on ‡ burst size and variability ‡ and long range dependence è a difficult choice for conformance ‡ r >> mean rate... ‡...or b very large b' non- conformance probability b

32 France Télécom R&D output rate C combined input rate  t time Bufferless multiplexing: alias "rate envelope multiplexing"  provisioning and/or admission control to ensure Pr [  t >C] <  è performance depends only on stationary rate distribution  loss rate  E [(  t -C) + ] / E [  t ] è insensitivity to self-similarity

33 France Télécom R&D Efficiency of bufferless multiplexing è small amplitude of rate variations... ‡ peak rate << link rate (eg, 1%)

34 France Télécom R&D Efficiency of bufferless multiplexing è small amplitude of rate variations... ‡ peak rate << link rate (eg, 1%) è... or low utilisation ‡ overall mean rate << link rate

35 France Télécom R&D Efficiency of bufferless multiplexing è small amplitude of rate variations... ‡ peak rate << link rate (eg, 1%) è... or low utilisation ‡ overall mean rate << link rate è we may have both in an integrated network ‡ priority to streaming traffic ‡ residue shared by elastic flows

36 France Télécom R&D Flow scale: admission control è accept new flow only if transparency preserved ‡ given flow traffic descriptor ‡ current link status è no satisfactory solution for buffered multiplexing ‡ (we do not consider deterministic guarantees) ‡ unpredictable statistical performance è measurement-based control for bufferless multiplexing ‡ given flow peak rate ‡ current measured rate (instantaneous rate, mean, variance,...)

37 France Télécom R&D Flow scale: admission control è accept new flow only if transparency preserved ‡ given flow traffic descriptor ‡ current link status è no satisfactory solution for buffered multiplexing ‡ (we do not consider deterministic guarantees) ‡ unpredictable statistical performance è measurement-based control for bufferless multiplexing ‡ given flow peak rate ‡ current measured rate (instantaneous rate, mean, variance,...) è uncritical decision threshold if streaming traffic is light ‡ in an integrated network

38 France Télécom R&D Provisioning for negligible blocking è "classical" teletraffic theory; assume  Poisson arrivals, rate ‡ constant rate per flow r  mean duration 1/    mean demand, A =  r bits/s è blocking probability for capacity C ‡ B = E(C/r,A/r) ‡ E(m,a) is Erlang's formula: E(m,a)= ‡  scale economies 0 20 40 60 80 100 0.2 0.4 0.6 0.8  utilization (  =a/m) for E(m,a) = 0.01 m

39 France Télécom R&D Provisioning for negligible blocking è "classical" teletraffic theory; assume  Poisson arrivals, rate ‡ constant rate per flow r  mean duration 1/    mean demand, A =  r bits/s è blocking probability for capacity C ‡ B = E(C/r,A/r) ‡ E(m,a) is Erlang's formula: E(m,a)= ‡  scale economies è generalizations exist: ‡ for different rates ‡ for variable rates 0 20 40 60 80 100 0.2 0.4 0.6 0.8  utilization (  =a/m) for E(m,a) = 0.01 m

40 France Télécom R&D Outline è traffic characteristics è QoS engineering for streaming flows è QoS engineering for elastic traffic è service differentiation

41 France Télécom R&D Closed loop control for elastic traffic è reactive control ‡ end-to-end protocols (eg, TCP) ‡ queue management è time scale decomposition for performance analysis ‡ packet scale ‡ flow scale

42 France Télécom R&D è a multi-fractal arrival process Packet scale: bandwidth and loss rate

43 France Télécom R&D è a multi-fractal arrival process ‡ but loss and bandwidth related by TCP (cf. Padhye et al.) B(p) loss rate p congestion avoidance Packet scale: bandwidth and loss rate

44 France Télécom R&D è a multi-fractal arrival process ‡ but loss and bandwidth related by TCP (cf. Padhye et al.) ‡ B(p) loss rate p congestion avoidance Packet scale: bandwidth and loss rate

45 France Télécom R&D è a multi-fractal arrival process ‡ but loss and bandwidth related by TCP (cf. Padhye et al.) ‡ ‡ thus, p = B -1 (p): ie, loss rate depends on bandwidth share B(p) loss rate p congestion avoidance Packet scale: bandwidth and loss rate

46 France Télécom R&D Packet scale: bandwidth sharing è reactive control (TCP, scheduling) shares bottleneck bandwidth unequally ‡ depending on RTT, protocol implementation, etc. ‡ and differentiated services parameters

47 France Télécom R&D Packet scale: bandwidth sharing è reactive control (TCP, scheduling) shares bottleneck bandwidth unequally ‡ depending on RTT, protocol implementation, etc. ‡ and differentiated services parameters è optimal sharing in a network: objectives and algorithms... ‡ max-min fairness, proportional fairness, maximal utility,... route 0 route 1route L Example: a linear network

48 France Télécom R&D Packet scale: bandwidth sharing è reactive control (TCP, scheduling) shares bottleneck bandwidth unequally ‡ depending on RTT, protocol implementation, etc. ‡ and differentiated services parameters è optimal sharing in a network: objectives and algorithms... ‡ max-min fairness, proportional fairness, maximal utility,... è... but response time depends more on traffic process than the static sharing algorithm! route 0 route 1route L Example: a linear network

49 France Télécom R&D Flow scale: performance of a bottleneck link è assume perfect fair shares ‡ link rate C, n elastic flows  ‡ each flow served at rate C/n fair shares link capacity C

50 France Télécom R&D Flow scale: performance of a bottleneck link è assume perfect fair shares ‡ link rate C, n elastic flows  ‡ each flow served at rate C/n è assume Poisson flow arrivals ‡ an M/G/1 processor sharing queue  load,  = arrival rate x size / C  a processor sharing queue fair shares link capacity C

51 France Télécom R&D Flow scale: performance of a bottleneck link è assume perfect fair shares ‡ link rate C, n elastic flows  ‡ each flow served at rate C/n è assume Poisson flow arrivals ‡ an M/G/1 processor sharing queue  load,  = arrival rate x size / C è performance insensitive to size distribution  Pr [n transfers] =  n (1-  )  E [response time] = size / C(1-  ) 1 0 0 throughput C   a processor sharing queue fair shares link capacity C

52 France Télécom R&D Flow scale: performance of a bottleneck link è assume perfect fair shares ‡ link rate C, n elastic flows  ‡ each flow served at rate C/n è assume Poisson flow arrivals ‡ an M/G/1 processor sharing queue  load,  = arrival rate x size / C è performance insensitive to size distribution  Pr [n transfers] =  n (1-  )  E [response time] = size / C(1-  )  instability if  > 1 ‡ i.e., unbounded response time ‡ stabilized by aborted transfers... ‡... or by admission control 1 0 0 throughput C   a processor sharing queue fair shares link capacity C

53 France Télécom R&D Generalizations of PS model è non-Poisson arrivals ‡ Poisson sessions ‡ Bernoulli feedback Poisson session arrivals p 1-p flows think time transfer processor sharing infinite server

54 France Télécom R&D Generalizations of PS model è non-Poisson arrivals ‡ Poisson sessions ‡ Bernoulli feedback è discriminatory processor sharing  weight  i for class i flows  service rate   i Poisson session arrivals p 1-p flows think time transfer processor sharing infinite server

55 France Télécom R&D Generalizations of PS model è non-Poisson arrivals ‡ Poisson sessions ‡ Bernoulli feedback è discriminatory processor sharing  weight  i for class i flows  service rate   i è rate limitations (same for all flows) ‡ maximum rate per flow (eg, access rate) ‡ minimum rate per flow (by admission control) Poisson session arrivals p 1-p flows think time transfer processor sharing infinite server

56 France Télécom R&D Admission control can be useful

57 France Télécom R&D Admission control can be useful

58 France Télécom R&D Admission control can be useful...... to prevent disasters at sea !

59 France Télécom R&D Admission control can also be useful for IP flows è improve efficiency of TCP ‡ reduce retransmissions overhead... ‡... by maintaining throughput è prevent instability  due to overload (  > 1)... ‡...and retransmissions è avoid aborted transfers ‡ user impatience ‡ "broken connections" è a means for service differentiation...

60 France Télécom R&D Choosing an admission control threshold è N = the maximum number of flows admitted  negligible blocking when   0 100 200 N 300 200 100 0 E [Response time]/size 0 100 200 N 1.8.6.4.2 0 Blocking probability

61 France Télécom R&D Choosing an admission control threshold è N = the maximum number of flows admitted  negligible blocking when   è M/G/1/N processor sharing system ‡ min bandwidth = C/N  Pr [blocking] =  N (1 -  )/(1 -  N+1 )  (1 - 1/  for  >  0 100 200 N 300 200 100 0 E [Response time]/size  = 0.9  = 1.5 0 100 200 N 1.8.6.4.2 0 Blocking probability  = 0.9  = 1.5

62 France Télécom R&D Choosing an admission control threshold è N = the maximum number of flows admitted  negligible blocking when   è M/G/1/N processor sharing system ‡ min bandwidth = C/N  Pr [blocking] =  N (1 -  )/(1 -  N+1 )  (1 - 1/  for  >  è uncritical choice of threshold ‡ eg, 1% of link capacity (N=100) 0 100 200 N 300 200 100 0 E [Response time]/size  = 0.9  = 1.5 0 100 200 N 1.8.6.4.2 0 Blocking probability  = 0.9  = 1.5

63 France Télécom R&D backbone link (rate C) access links (rate<<C) 1 0 0 throughput C  access rate Impact of access rate on backbone sharing è TCP throughput is limited by access rate... ‡ modem, DSL, cable è... and by server performance

64 France Télécom R&D backbone link (rate C) access links (rate<<C) 1 0 0 throughput C  access rate Impact of access rate on backbone sharing è TCP throughput is limited by access rate... ‡ modem, DSL, cable è... and by server performance è  backbone link is a bottleneck only if saturated!  ie, if  > 1

65 France Télécom R&D Provisioning for negligible blocking for elastic flows è "elastic" teletraffic theory; assume  Poisson arrivals, rate ‡ mean size s è blocking probability for capacity C  utilization  = s/C ‡ m = admission control limit  B( ,m) =  m (1-  )/(1-  m+1 ) 0 20 40 60 80 100 0.2 0.4 0.6 0.8  utilization (  ) for B = 0.01 m

66 France Télécom R&D Provisioning for negligible blocking for elastic flows è "elastic" teletraffic theory; assume  Poisson arrivals, rate ‡ mean size s è blocking probability for capacity C  utilization  = s/C ‡ m = admission control limit  B( ,m) =  m (1-  )/(1-  m+1 ) è impact of access rate ‡ C/access rate = m  B( ,m)  E(m,  m) 0 20 40 60 80 100 0.2 0.4 0.6 0.8  utilization (  ) for B = 0.01 m E(m,  m)

67 France Télécom R&D Outline è traffic characteristics è QoS engineering for streaming flows è QoS engineering for elastic traffic è service differentiation

68 France Télécom R&D Service differentiation è discriminating between stream and elastic flows ‡ transparency for streaming flows ‡ response time for elastic flows è discriminating between stream flows ‡ different delay and loss requirements ‡... or the best quality for all? è discriminating between elastic flows ‡ different response time requirements ‡... but how?

69 France Télécom R&D Integrating streaming and elastic traffic è priority to packets of streaming flows ‡ low utilization  negligible loss and delay

70 France Télécom R&D Integrating streaming and elastic traffic è priority to packets of streaming flows ‡ low utilization  negligible loss and delay è elastic flows use all remaining capacity ‡ better response times ‡ per flow fair queueing (?)

71 France Télécom R&D Integrating streaming and elastic traffic è priority to packets of streaming flows ‡ low utilization  negligible loss and delay è elastic flows use all remaining capacity ‡ better response times ‡ per flow fair queueing (?) è to prevent overload ‡ flow based admission control... ‡...and adaptive routing

72 France Télécom R&D Integrating streaming and elastic traffic è priority to packets of streaming flows ‡ low utilization  negligible loss and delay è elastic flows use all remaining capacity ‡ better response times ‡ per flow fair queueing (?) è to prevent overload ‡ flow based admission control... ‡...and adaptive routing è an identical admission criterion for streaming and elastic flows ‡ available rate > R

73 France Télécom R&D Differentiation for stream traffic è different delays? ‡ priority queues, WFQ,... ‡ but what guarantees? delay

74 France Télécom R&D Differentiation for stream traffic è different delays? ‡ priority queues, WFQ,... ‡ but what guarantees? è different loss? ‡ different utilization (CBQ,...) ‡ "spatial queue priority" partial buffer sharing, push out delay loss

75 France Télécom R&D Differentiation for stream traffic è different delays? ‡ priority queues, WFQ,... ‡ but what guarantees? è different loss? ‡ different utilization (CBQ,...) ‡ "spatial queue priority" partial buffer sharing, push out è or negligible loss and delay for all ‡ elastic-stream integration... ‡... and low stream utilization loss delay loss

76 France Télécom R&D Differentiation for elastic traffic è different utilization ‡ separate pipes ‡ class based queuing 1 0 0 throughput C  access rate 1 st class 3 rd class 2 nd class

77 France Télécom R&D Differentiation for elastic traffic è different utilization ‡ separate pipes ‡ class based queuing è different per flow shares ‡ WFQ ‡ impact of RTT,... 1 0 0 throughput C access rate  1 st class 3 rd class 2 nd class 1 0 0 throughput C  access rate

78 France Télécom R&D Differentiation for elastic traffic è different utilization ‡ separate pipes ‡ class based queuing è different per flow shares ‡ WFQ ‡ impact of RTT,... è discrimination in overload ‡ impact of aborts (?) ‡ or by admission control 1 0 0 throughput C access rate  1 st class 3 rd class 2 nd class 1 0 0 throughput C access rate 

79 France Télécom R&D Different accessibility è block class 1 when 100 flows in progress - block class 2 when N 2 flows in progress 0 100 200 N 1 0 Blocking probability  = 0.9  = 1.5

80 France Télécom R&D Different accessibility è block class 1 when 100 flows in progress - block class 2 when N 2 flows in progress 0  1 =  2 = 0.4 0 N2N2 1 100

81 France Télécom R&D Different accessibility è block class 1 when 100 flows in progress - block class 2 when N 2 flows in progress  in underload: both classes have negligible blocking (B 1  B 2  0) 0  1 =  2 = 0.4 0 N2N2 1 100 B2B10B2B10

82 France Télécom R&D.33 0  1 =  2 = 0.6 0100 N2N2 1 Different accessibility è block class 1 when 100 flows in progress - block class 2 when N 2 flows in progress  in underload: both classes have negligible blocking (B 1  B 2  0) è in overload: discrimination is effective  if  1 < 1 <  1 +  2, B 1  0, B 2  (  1 +  2 -1)/  2 B1B1 B2B2 B2B10B2B10 0  1 =  2 = 0.4 0 N2N2 1

83 France Télécom R&D Different accessibility è block class 1 when 100 flows in progress - block class 2 when N 2 flows in progress  in underload: both classes have negligible blocking (B 1  B 2  0) è in overload: discrimination is effective  if  1 < 1 <  1 +  2, B 1  0, B 2  (  1 +  2 -1)/  2  if 1 <  1, B 1  (  1 -1)/  1, B 2  1 B1B1 B2B2 1.17  1 =  2 = 1.2 0100 N2N2 B2B2 B1B1.33 0  1 =  2 = 0.6 0100 N2N2 1 B2B10B2B10 0  1 =  2 = 0.4 0 N2N2 1

84 France Télécom R&D Service differentiation and pricing è different QoS requires different prices... ‡ or users will always choose the best è...but streaming and elastic applications are qualitatively different ‡ choose streaming class for transparency ‡ choose elastic class for throughput è  no need for streaming/elastic price differentiation è different prices exploit different "willingness to pay"... ‡ bringing greater economic efficiency è...but QoS is not stable or predictable ‡ depends on route, time of day,.. ‡ and on factors outside network control: access, server, other networks,... è  network QoS is not a sound basis for price discrimination

85 France Télécom R&D Pricing to pay for the network è fix a price per byte ‡ to cover the cost of infrastructure and operation è estimate demand ‡ at that price è provision network to handle that demand ‡ with excellent quality of service demand time of day capacity

86 France Télécom R&D Pricing to pay for the network è fix a price per byte ‡ to cover the cost of infrastructure and operation è estimate demand ‡ at that price è provision network to handle that demand ‡ with excellent quality of service demand time of day $$$ capacity $$$ demand time of day capacity optimal price  revenue = cost

87 France Télécom R&D Outline è traffic characteristics è QoS engineering for streaming flows è QoS engineering for elastic traffic è service differentiation è conclusions

88 France Télécom R&D Conclusions è a statistical characterization of demand ‡ a stationary random process in the busy period ‡ a flow level characterization (streaming and elastic flows)

89 France Télécom R&D Conclusions è a statistical characterization of demand ‡ a stationary random process in the busy period ‡ a flow level characterization (streaming and elastic flows) è transparency for streaming flows ‡ rate envelope ("bufferless") multiplexing ‡ the "negligible jitter conjecture"

90 France Télécom R&D Conclusions è a statistical characterization of demand ‡ a stationary random process in the busy period ‡ a flow level characterization (streaming and elastic flows) è transparency for streaming flows ‡ rate envelope ("bufferless") multiplexing ‡ the "negligible jitter conjecture" è response time for elastic flows ‡ a "processor sharing" flow scale model ‡ instability in overload (i.e., E [demand]> capacity) 1 0 0 C 

91 France Télécom R&D Conclusions è a statistical characterization of demand ‡ a stationary random process in the busy period ‡ a flow level characterization (streaming and elastic flows) è transparency for streaming flows ‡ rate envelope ("bufferless") multiplexing ‡ the "negligible jitter conjecture" è response time for elastic flows ‡ a "processor sharing" flow scale model ‡ instability in overload (i.e., E [demand]> capacity) è service differentiation ‡ distinguish streaming and elastic classes ‡ limited scope for within-class differentiation ‡ flow admission control in case of overload 1 0 0 C 


Download ppt "France Télécom R&D Engineering for QoS and the limits of service differentiation Jim Roberts IWQoS June 2000."

Similar presentations


Ads by Google