Download presentation
Presentation is loading. Please wait.
1
paul@sep.stanford.edu Amplitude-preserved wave-equation migration Paul Sava & Biondo Biondi SEP108 (pages 1-27)
2
paul@sep.stanford.edu Wave-equation imaging Why? –Complex wavefields –Sharp velocity variation sub-salt What? –Reflectivity function of incidence angle Imaging Migration Velocity Analysis (MVA) Amplitude vs. Angle Analysis (AVA)
3
paul@sep.stanford.edu Angle-Domain Common Image Gathers Applications –imaging –S/G migration (Prucha et at., 1999) –shot-profile migration (Rickett, 2001) –seismic inversion (Prucha et. al., 2001) –MVA –traveltime tomography (Clapp, 2000) –wave-equation MVA (Sava & Biondi, 2000) –C-waves –polarity reversal (Rosales, 2001) –AVA –wave-equation AVA (Gratwick, 2001)
4
paul@sep.stanford.edu Angle-gathers vs. offset-gathers Offset gather Angle gather
5
paul@sep.stanford.edu Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting function COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA
6
paul@sep.stanford.edu Reflection scheme: global view SourceReceiver V(x,y,z)
7
paul@sep.stanford.edu Reflection scheme: local view 2h v
8
paul@sep.stanford.edu ADCIG methods Reflection angleOffset ray-parameter k-domain (RTT) x-domain (slant-stack)
9
paul@sep.stanford.edu ADCIG: example
10
paul@sep.stanford.edu ADCIG methods: comparison Reflection angleOffset ray-parameter indirectly –function of dip directlyReflection angle less sensitivesensitiveInaccurate velocity boundaries data space –mixed with migration image space –separated from migration Computation domain
11
paul@sep.stanford.edu Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting function COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA
12
paul@sep.stanford.edu Spatial bandwidth khkh kzkz max max kzkz +90-90 max max
13
paul@sep.stanford.edu Synthetic: ideal gather frequency domainspace domainamplitude
14
paul@sep.stanford.edu Temporal bandwidth imageangle gather dataoffset gather wide frequency band narrow frequency band kzkz khkh kzkz khkh khkh kzkz
15
paul@sep.stanford.edu Temporal bandwidth frequency domainspace domainamplitude
16
paul@sep.stanford.edu RTT implementation Two possibilities: –push: loop over input –pull: loop over output khkh kzkz kzkz angle gather offset gather
17
paul@sep.stanford.edu push RTT offset-gatherangle-gather k-domain x-domain
18
paul@sep.stanford.edu pull RTT offset-gatherangle-gather k-domain x-domain
19
paul@sep.stanford.edu RTT amplitudes
20
paul@sep.stanford.edu Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting functions COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA
21
paul@sep.stanford.edu Amplitude-preserving migration Definition: the process of recovering the amplitude of the reflectivity vector given –perfect data –infinite bandwidth –infinite aperture
22
paul@sep.stanford.edu Modeling operator L: modeling operator A: Amplitude operator G: Reflection operator i 0 : seismic image r: reflectivity d: seismic data
23
paul@sep.stanford.edu Amplitude operator Clayton & Stolt (1981) L: modeling operator A: amplitude operator G: Reflection operator i 0 : seismic image r: reflectivity d: seismic data
24
paul@sep.stanford.edu Reflection operator L: modeling operator A: amplitude operator G: reflection operator i 0 : seismic image r: reflectivity d: seismic data Clayton & Stolt (1981) Stolt & Benson (1986)
25
paul@sep.stanford.edu Amplitude-preserving operator L: modeling operator A: amplitude operator G: reflection operator i 0 : seismic image r: reflectivity d: seismic data
26
paul@sep.stanford.edu Weighting operator modelingmigration
27
paul@sep.stanford.edu Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting functions COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA
28
paul@sep.stanford.edu Amplitude correction: the problem frequency domainspace domainamplitude
29
paul@sep.stanford.edu Jacobian: general expression image space data space
30
paul@sep.stanford.edu Jacobian: 2-D, image space 2h v
31
paul@sep.stanford.edu Jacobian: general expression image space data space
32
paul@sep.stanford.edu Jacobian: 2-D, data space 2h v
33
paul@sep.stanford.edu Jacobian: 2-D, flat reflectors (Wapenaar et al., 1999)
34
paul@sep.stanford.edu Amplitude correction: the problem frequency domainspace domainamplitude
35
paul@sep.stanford.edu AVA: correct amplitudes frequency domainspace domainamplitude
36
paul@sep.stanford.edu Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting function COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA
37
paul@sep.stanford.edu COMAZ: stationary-phase view from above 2-DCOMAZ
38
paul@sep.stanford.edu Amplitude component Phase-shift component COMAZ: stationary-phase correction
39
paul@sep.stanford.edu COMAZ: no amplitude corrections
40
paul@sep.stanford.edu COMAZ: all amplitude corrections
41
paul@sep.stanford.edu Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting function COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA
42
paul@sep.stanford.edu True-amplitude migration L: modeling operator A: amplitude operator G: reflection operator i 0 : seismic image r: reflectivity d: seismic data
43
paul@sep.stanford.edu True-amplitude migration: COMAZ OPERATORS L: modeling W: Jacobian A: amplitude A stat : stationary-phase G: reflection
44
paul@sep.stanford.edu True-amplitude migration: real data
45
paul@sep.stanford.edu Inversion: pseudo-unitary operators InversionMigration
46
paul@sep.stanford.edu Inversion: preconditioned regularization
47
paul@sep.stanford.edu Wave-equation MVA L: Wave-equation MVA m: slowness perturbation d: image perturbation References: SEP100, SEP103, SEP105
48
paul@sep.stanford.edu WEMVA: model
49
paul@sep.stanford.edu WEMVA: correct amplitudes
50
paul@sep.stanford.edu WEMVA: incorrect amplitudes
51
paul@sep.stanford.edu Summary The goal –Reflectivity function of reflection angle The means –correct ADCIG transformations –kinematics –amplitudes –correct migration amplitude
52
paul@sep.stanford.edu Applications true-amplitude migration seismic inversion AVA wave-equation MVA
53
paul@sep.stanford.edu
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.