Download presentation
Presentation is loading. Please wait.
1
C LAUS B RABRAND S EMANTICS (Q1,’06) S EP 21, 2006 C LAUS B RABRAND © 2005--2006, University of Aarhus [ brabrand@daimi.au.dk ] [ http://www.daimi.au.dk/~brabrand/ ] S EMANTICS (Q1,’06) W EEK 4: ”STR. IND., DEFINITIONS, STATIC AND DYN. SEM.”
2
C LAUS B RABRAND [ 2 ] S EMANTICS (Q1,’06) S EP 21, 2006 Outline Competition Results Feedback from T.A.s Structural Induction (and Proof Structure) Comprehensive Structural Induction Example Finite vs. Infinite Stores Functional Languages (Let) Definitions (Let++) Type-Checking Definitions (Let B ++)
3
C LAUS B RABRAND [ 3 ] S EMANTICS (Q1,’06) S EP 21, 2006 Hand-in 2 Competition Hand-in 2 Competition:
4
C LAUS B RABRAND [ 4 ] S EMANTICS (Q1,’06) S EP 21, 2006 And the winner is... 1. 3. 2. Rikke Bendlin Emil Renner Berthing Jannick Bitsch (for introduction)
5
C LAUS B RABRAND [ 5 ] S EMANTICS (Q1,’06) S EP 21, 2006 Feedback from T.A.s Live exercises...(!!) Activation (both during + after lecture) Getting a fish vs. learning to fish... Exercise = Exam Training (really nice to have) Non-canonical (using your suggestions) 'Improvisation' (depending on feedback in auditorium) Otherwise: ask specific questions on the webboard... Curriculum...(?) Not unfair that lectures may actually be useful (!!) Exam questions are based on written material Notes + presentation slides + exercises
6
C LAUS B RABRAND [ 6 ] S EMANTICS (Q1,’06) S EP 21, 2006 Exam Preliminary Date October 18, 2006 (Wednesday) 5 ECTS 4 hours All usual materials 13-scale And yes, there will be at least one exercise on Structural Induction.
7
C LAUS B RABRAND S EMANTICS (Q1,’06) S EP 21, 2006 S TRUCTURAL I NDUCTION A Detailed Example: Determinism of SOS for L-Expressions
8
C LAUS B RABRAND [ 8 ] S EMANTICS (Q1,’06) S EP 21, 2006 Structural Induction (for Exp) Given: Arithmetic Expressions ( e Exp) e ::= n | v | e 0 +e 1 e Exp : P(e) P(n) composite (inductive) case base cases Principle of structural induction: P(e 0 ) P(e 1 ) P(e 0 +e 1 ) P(v) and
9
C LAUS B RABRAND [ 9 ] S EMANTICS (Q1,’06) S EP 21, 2006 Intuition: Induction vs. Str’ Induction Induction: Holds for ? Structural Induction: Holds for ? P(0)P(0) => P(1)P(1) => P(2)P(2) => P(3) P(3) P(7+(x+y)) P(7) P(x) P(y) P(x+y) P(7+(x+y))
10
C LAUS B RABRAND [ 10 ] S EMANTICS (Q1,’06) S EP 21, 2006 Structural Induction Examples Given: Arithmetic Expressions ( e Exp) Determinism of SOS* for L-expressions : “One-step evaluation of expressions is deterministic” e ::= n | v | e 0 +e 1 P(e) , ’: [ ( | _ e | _ e ’ ) => = ’ ] e: P(e) */ using the (side-effectless) small-step operational semantics Let be given: Prove: (i.e., “prove property, P, holds for all expressions”)
11
C LAUS B RABRAND [ 11 ] S EMANTICS (Q1,’06) S EP 21, 2006 Proof Structure (according to SI) Base cases: Case [ n ]; show : Case [ v ]; show : Inductive case: Case [ e 0 +e 1 ]; show : assume induction hypothesis [lhs]: P(e 0 ) P(e 1 ) show inductive step [rhs]: P(e 0 +e 1 ) P(n) , ’: ( | _ n | _ n ’ ) => = ’ P(v) , ’: ( | _ v | _ v ’ ) => = ’ P(e 0 ) , ’: ( | _ e 0 | _ e 0 ’ ) => = ’ P(e 1 ) , ’: ( | _ e 1 | _ e 1 ’ ) => = ’ P(e 0 +e 1 ) , ’: ( | _ e 0 +e 1 | _ e 0 +e 1 ’ ) => = ’ P(n) P(v) P(e 0 ) P(e 1 ) => P(e 0 +e 1 )
12
C LAUS B RABRAND [ 12 ] S EMANTICS (Q1,’06) S EP 21, 2006 Proof: Base Case [n] Case [ n ]; show : Show implication “ => ” (assume [lhs], show [rhs]): However, since [lhs] is trivially false (no rules for constants), the whole thing is trivially true (aka. “vacuously true”) Recall that: [explanation]explanation P(n) , ’: ( | _ n | _ n ’ ) => = ’ P(n) b : (false => b) true P Q P Q PQ P Q false true falsetrue false true
13
C LAUS B RABRAND [ 13 ] S EMANTICS (Q1,’06) S EP 21, 2006 Proof: Base Case [v] Case [ v ]; show : Show implication “ => ” (assume [lhs], show [rhs]): assume [lhs]: and for some , ’ show [rhs]: could only be because ; thus, = (v) …and similarly: could only be because ; thus, ’ = (v) Thus, we have that: = (v) = ’ (as required) P(v) , ’: ( | _ v | _ v ’ ) => = ’ P(v) |_ v |_ v = ’ |_ v ’ |_ v ’ |_ v |_ v | _ v (v) |_ v ’ |_ v ’
14
C LAUS B RABRAND [ 14 ] S EMANTICS (Q1,’06) S EP 21, 2006 Proof: Inductive Case [e 0 +e 1 ] Case [ e 0 +e 1 ]; show : assume induction hypothesis: P(e 0 ) P(e 1 ) show inductive step: P(e 0 +e 1 ) Show implication “ => ” (assume [lhs], show [rhs]): Assume [lhs]: and for some , ’ Show [rhs]: When could we have that: (?) Case Analysis (on e 0 +e 1 ) Three possibilities ( [SUM 1 ], [SUM 2 ], and [SUM 3 ] )… P(e 0 ) , ’: ( | _ e 0 | _ e 0 ’ ) => = ’ P(e 1 ) , ’: ( | _ e 1 | _ e 1 ’ ) => = ’ P(e 0 +e 1 ) , ’: ( | _ e 0 +e 1 | _ e 0 +e 1 ’ ) => = ’ P(e 0 ) P(e 1 ) => P(e 0 +e 1 ) | _ e 0 +e 1 | _ e 0 +e 1 ’ = ’ | _ e 0 +e 1
15
C LAUS B RABRAND [ 15 ] S EMANTICS (Q1,’06) S EP 21, 2006 Proof: Case Analysis (on e 0 +e 1 ) Case Analysis (on e 0 +e 1 ): Case [SUM 1 (e 0 Z)]: could only be because But from our induction hypothesis, P(e 0 ) ; i.e. … : … we get that: and implies that: e 0 ’ = e 0 ” Thus we have that: = e 0 ’+e 1 = e 0 ”+e 1 = ’ (as required) | _ e 0 +e 1 |_ e0 e0’ |_ e0 e0’ | _ e 0 +e 1 e 0 ’+e 1 = |_ e0 e0” |_ e0 e0” | _ e 0 +e 1 e 0 ”+e 1 = ’ | _ e 0 +e 1 ’ |_ e0 e0’ |_ e0 e0’ |_ e0 e0” |_ e0 e0” P(e 0 ) , ’: ( | _ e 0 | _ e 0 ’ ) => = ’
16
C LAUS B RABRAND [ 16 ] S EMANTICS (Q1,’06) S EP 21, 2006 Proof: Case Analysis (on e 0 +e 1 ) Case [SUM 2 (e 0 Z, e 1 Z)]: (analoguous) Case [SUM 3 (e 0 Z, e 1 Z)]: could only be because Thus, we have that: = m = n 0 +n 1 = m’ = ’ (as required) | _ n 0 +n 1 | _ n 0 +n 1 ’ | _ e 0 +e 1 m = | _ e 0 +e 1 m’ = ’ m = n 0 +n 1 m’ = n 0 +n 1
17
C LAUS B RABRAND [ 17 ] S EMANTICS (Q1,’06) S EP 21, 2006 What did we do: Proof Structure Base cases: Case [ n ]; showed : Case [ v ]; showed : Inductive case: Case [ e 0 +e 1 ]; showed : assumed induction hypothesis [lhs]: P(e 0 ) P(e 1 ) showed inductive step [rhs] via case analysis: P(e 0 +e 1 ) P(n) , ’: ( | _ n | _ n ’ ) => = ’ P(v) , ’: ( | _ v | _ v ’ ) => = ’ P(e 0 ) , ’: ( | _ e 0 | _ e 0 ’ ) => = ’ P(e 1 ) , ’: ( | _ e 1 | _ e 1 ’ ) => = ’ P(e 0 +e 1 ) , ’: ( | _ e 0 +e 1 | _ e 0 +e 1 ’ ) => = ’ P(n) P(v) P(e 0 ) P(e 1 ) => P(e 0 +e 1 )
18
C LAUS B RABRAND S EMANTICS (Q1,’06) S EP 21, 2006 I NFINITE vs. F INITE S TORES
19
C LAUS B RABRAND [ 19 ] S EMANTICS (Q1,’06) S EP 21, 2006 Problem: Infinite Stores Problem: (Var infinite) Solution: (for V FIN Var) Now define finite configurations: Store = Var Z v Store V = V Z V,E := { | Var E ( e ) V Store V } appropriate store all vars in “V”
20
C LAUS B RABRAND [ 20 ] S EMANTICS (Q1,’06) S EP 21, 2006 Finite Typeable Configurations Configurations (Exp): Transitions (using “ V,E ”): Configurations (Com): Transitions (using “ V,C ”): V.C := { | Var C ( c ) V Store V | _ wfc c } V,E := { | Var E ( e ) V Store V : | _ e: } V,E [ SUM 1 ] V,C [ SEQ 1 ] { | Store V }
21
C LAUS B RABRAND [ 21 ] S EMANTICS (Q1,’06) S EP 21, 2006 Variable Extraction Functions Var E : Exp P(Var) Var E ( n ) = Ø Var E ( t ) = Ø Var E ( v ) = { v } Var E ( ~ e ) = Var E ( e ) Var E ( e e’ ) = Var E ( e ) Var E ( e’ ) Var C : Com P(Var) Var C ( nil ) = Ø Var C ( x := e ) = { x } Var E ( e ) Var C ( c ; c’ ) = Var C ( c ) Var C ( c’ ) Var C ( if e then c else c’ ) = Var E ( e ) Var C ( c ) Var C ( c’ ) Var C ( while e do c ) = Var E ( e ) Var C ( c ) e ::= n | v | ~ e | e e’ c ::= nil | v := e | c ; c’ | if b then c else c’ | while b do c
22
C LAUS B RABRAND [ 22 ] S EMANTICS (Q1,’06) S EP 21, 2006 Finite Typeable Configurations Configurations (Exp): Transitions (using “ V,E ”): Configurations (Com): Transitions (using “ V,C ”): V.C := { | Var C ( c ) V Store V | _ wfc c } V,E := { | Var E ( e ) V Store V : | _ e: } V,E [ SUM 1 ] V,C [ SEQ 1 ] { | Store V }
23
C LAUS B RABRAND S EMANTICS (Q1,’06) S EP 21, 2006 D EFINITIONS (FUNCTIONAL LANGs)
24
C LAUS B RABRAND [ 24 ] S EMANTICS (Q1,’06) S EP 21, 2006 Introducing Binding Constructs Consider the language ”Let”: Expressions ( e Exp): Example Let program: Note: the actual identifier names are irrellevant (only the use-def links are significant) e ::= n | x | e e’ | let x = e in e’ { +, -, * } …where: x + let x = 5 in x + let x = 1 + x in x * x Definition (def) Usage (use): Free use Bound use use-def link Terminology definition scope for ' x '
25
C LAUS B RABRAND [ 25 ] S EMANTICS (Q1,’06) S EP 21, 2006 Free Variables Determine the free variables? FV: Exp P(Var) FV( n ) = Ø FV( x ) = { x } FV( e e’ ) = FV( e ) FV( e’ ) FV( let x=e in e’ ) = FV( e ) ( FV( e’ ) \ { x } ) e ::= n | x | e e’ | let x = e in e'
26
C LAUS B RABRAND [ 26 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Semantics (Trans. Sys.) Define (family of) environments: recall terminology (no side-effects) Configurations: i.e., numbers Transition relation: ; writing for V = { | Env V FV( e ) V } T V = { | Env V z Z } v Env V = V Z Note: this is done slightly differently in the note [SOS]: through “relative transition systems” that are (implicitly) relative to an environment. V V VV V V |- e V e (, ) ‘ V ’
27
C LAUS B RABRAND [ 27 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Semantics [n] | [x] | [e e] Structural Operational Semantics: [ BOP 1 ] [ BOP 2 ] [ BOP 3 ] [ VAR ] |- e 0 e 1 V e 0 ’ e 1 |- e 0 V e 0 ’ |- z 0 z 1 V z z = z 0 z 1 |- z 0 e 1 V z 0 e 1 ’ |- e 1 V e 1 ’ |- x V z z = (x) Env V = V Z
28
C LAUS B RABRAND [ 28 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Semantics [ let-in ] Structural Operational Semantics: Note: the premisis works in the extended environment Live exercise: eval in env: [ LET 2 ] [ LET 3 ] [ LET 1 ] |- let x = e 0 in e 1 V let x = e 0 ’ in e 1 |- e 0 V e 0 ’ |- let x = z in n V n |- let x = z in e 1 V let x = z in e 1 ’ [x z] |- e 1 V {x} e 1 ’ let x=y in x [y7][y7] Env V = V Z
29
C LAUS B RABRAND S EMANTICS (Q1,’06) S EP 21, 2006 C OMPOUND D EFINITIONS
30
C LAUS B RABRAND [ 30 ] S EMANTICS (Q1,’06) S EP 21, 2006 Compound Definitions Consider language Let++: Expressions ( e Exp): Definitions (d Def): e ::= n | x | e e’ | let d in e d ::= nil | x = e | d ; d’ | d and d’ | d in d’ x + 3y = x+7 Graphically: Val Env {x} Env {y} [x1][x1] Env {x} [x1][x1][y8][y8] 4 { +, -, * } …where:
31
C LAUS B RABRAND [ 31 ] S EMANTICS (Q1,’06) S EP 21, 2006 Graphically: [x = e] | [d ; d’] Definition block: E.g.: Sequential definition: E.g.: let d in e d 0 ; d 1 let x=a ; y=b in b * c + y a b c x y b c >
32
C LAUS B RABRAND [ 32 ] S EMANTICS (Q1,’06) S EP 21, 2006 Graphically: [d and d’] | [d in d’] Simultaneous definition: E.g.: Private definition: E.g.: d 0 and d 1 d 0 in d 1 >
33
C LAUS B RABRAND S EMANTICS (Q1,’06) S EP 21, 2006 C OMPOUND D EFINITIONS Semantics of Let++
34
C LAUS B RABRAND [ 34 ] S EMANTICS (Q1,’06) S EP 21, 2006 Static Semantics: Let++ Problem: I.e. non-disjoint simultaneous definitions! Solution: static semantics def / exp “well-formedness relations”: ‘|- wfd ’ / ‘|- wfe ’: let x = 1 and x = 2 in x | _ wfe e | _ wfe e’ | _ wfe e e’ Exp well-formedness: | _ wfe n | _ wfe x | _ wfd d | _ wfe e | _ wfe let d in e Definition well-formedness: | _ wfd nil | _ wfe e | _ wfd x = e | _ wfd d | _ wfd d’ | _ wfd d ; d’ | _ wfd d | _ wfd d’ | _ wfd d and d’ | _ wfd d | _ wfd d’ | _ wfd d in d’ DV( d ) DV( d’ ) = Ø
35
C LAUS B RABRAND [ 35 ] S EMANTICS (Q1,’06) S EP 21, 2006 Recall: Free Variables for Let Let: FV( n ) = Ø FV( x ) = { x } FV( e e’ ) = FV( e ) FV( e’ ) FV( let x=e in e’ ) = FV( e ) ( FV( e’ ) \ { x } ) Let++: FV( let d in e’ ) = FV( d ) ( FV( e’ ) \ DV( d ) ) So we need FV( d ) and DV( d ) …
36
C LAUS B RABRAND [ 36 ] S EMANTICS (Q1,’06) S EP 21, 2006 Defining Variables and Free Variables DV: Def P(Var) DV( nil ) = Ø DV( x = e )= { x } DV( d ; d’ ) = DV( d ) DV( d’ ) DV( d and d’ )= DV( d ) DV( d’ ) DV( d in d’ )= DV( d’ ) FV: Def P(Var) FV( nil ) = Ø FV( x = e )= FV( e ) FV( d ; d’ ) = FV( d ) ( FV( d’ ) \ DV( d ) ) FV( d and d’ )= FV( d ) FV( d’ ) FV( d in d’ )= FV( d ) ( FV( d’ ) \ DV( d ) ) + should be disjoint union d ::= nil | x = e | d ; d’ | d and d’ | d in d’
37
C LAUS B RABRAND [ 37 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Semantics Expression Configurations: Problem: what should definitions evaluate to? Environments (like expressions evaluate to numbers) Solution: “environments as results” (add intermediate syntax): Definition Configurations: V,E = { | Env V FV( e ) V |- wfe e } T V,E = { | Env V z Z } only well-formed exps d ::= nil | x = e | d ; d’ | d and d’ | d in d’ | 0 V,D = { | Env V FV( d ) V |- wfd d } T V,D = { | Env V } only well-formed defs
38
C LAUS B RABRAND [ 38 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Semantics: Exp Structural Operational Semantics: Note: the premisis works in the 0 - extended environment [ LET 2 ] E [ LET 3 ] E [ LET 1 ] E Env V = V Z |- let d in e V let d’ in e |- d V d’ |- let 0 in n V n |- let 0 in e V let 0 in e’ [ 0 ] |- e V DV( 0) e’
39
C LAUS B RABRAND [ 39 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Sem.: Def [nil] | [x=e] Structural Operational Semantics: [ NIL ] D |- nil V [] the empty environment, [] [ DEF 1 ] D |- x = e V x = e’ |- e V e’ [ DEF 2 ] D |- x = n V [x n] the environment, [x n] Env V = V Z
40
C LAUS B RABRAND [ 40 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Sem.: Def [d;d’] Structural Operational Semantics: Note: the premisis works in the 0 - extended environment Note: the result is the combined environment, 0 [ 1 ] [ SEQ 2 ] D [ SEQ 3 ] D [ SEQ 1 ] D |- d 0 ; d 1 V d 0 ’ ; d 1 |- d 0 V d 0 ’ |- 0 ; 1 V 0 [ 1 ] |- 0 ; d 1 V 0 ; d 1 ’ [ 0 ] |- d 1 V DV( 0) d 1 ’ Env V = V Z Live exercise: evaluate in environment: x = 2 ; x = x+y [ y = 1]
41
C LAUS B RABRAND [ 41 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Sem.: Def [d and d’] Structural Operational Semantics: Notice the independence of the two operands ( d 0 & d 1 ) Note: the result is the disj. combined environment, 0 1 [ AND 2 ] D [ AND 3 ] D [ AND 1 ] D |- d 0 and d 1 V d 0 ’ and d 1 |- d 0 V d 0 ’ |- 0 and 1 V 0 1 |- 0 and d 1 V 0 and d 1 ’ |- d 1 V d 1 ’ Env V = V Z Q: what happens if operands do not contain disjoint definitions (e.g. "x=1 and x=2") A: trans. sys. was only def'd for well-formed exps/defs! Hence, no such runtime errors!
42
C LAUS B RABRAND [ 42 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Sem.: Def [d in d’] Structural Operational Semantics: Note: the premisis works in the 0 - extended environment Note: the result is only the last environment, 1 [ IN 2 ] D [ IN 3 ] D [ IN 1 ] D |- d 0 in d 1 V d 0 ’ in d 1 |- d 0 V d 0 ’ |- 0 in 1 V 1 |- 0 in d 1 V 0 in d 1 ’ [ 0 ] |- d 1 V DV( 0) d 1 ’ Env V = V Z
43
C LAUS B RABRAND S EMANTICS (Q1,’06) S EP 21, 2006 T YPE C HECKING D EFINITIONS
44
C LAUS B RABRAND [ 44 ] S EMANTICS (Q1,’06) S EP 21, 2006 Adding Boolean Variables: Let B ++ Consider language Let B ++: Mixed Expressions ( e Exp): Definitions (d Def): Note: The type of a var is now context dependent I.e. a context-free (grammar) approach will not suffice Examples: ? ? … e ::= n | t | x | ~ e | e e’ | e ? e’ : e” | let d in e d ::= nil | x = e | d ; d’ | d and d’ | d in d’ { +, -, *, =, or } …where: x or tt x * x type definition (annotation) { bool, int } …where:
45
C LAUS B RABRAND [ 45 ] S EMANTICS (Q1,’06) S EP 21, 2006 Static Semantics: Let B ++ FV E, DV D and FV D as before …adding: We now need type environments: Type = { bool, int } Define static semantics (type checking rel’s): “ e has type (given type environment )” provided “ d yields type env. (given type env. )” provided FV E ( e ? e’: e” ) = FV E ( e ) FV E ( e’ ) FV E ( e” ) TEnv V = V Type |- V e : |- V d : FV E ( e ) V FV D ( d ) V
46
C LAUS B RABRAND [ 46 ] S EMANTICS (Q1,’06) S EP 21, 2006 Static Semantics (expressions) Expressions: [ NUM ] E |- V n : int |- V t : bool [ TVL ] E [ VAR ] E |- V x : (x) [ VAR ] E |- V ~ e : bool |- V e : bool [ LET ] E |- V let d in e : |- V d : [ ] |- V DV{ } e : [ IFE ] E |- V e 0 ? e 1 : e 2 : |- V e 0 : bool |- V e 1 : 1 |- V e 2 : 2 = 1 =2 = 1 =2 [ BOP ] E |- V e 0 e 1 : type ( 0, 1 ) |- V e 0 : 0 |- V e 1 : 1
47
C LAUS B RABRAND [ 47 ] S EMANTICS (Q1,’06) S EP 21, 2006 Static Semantics (definitions) Definitions: [ NIL ] D |- V nil : [] [ DEF ] D |- V x = e : [x ] |- V e : ’ = ’ = ’ [ SEQ ] D |- V d 0 ; d 1 : 0 [ 1 ] |- V d 0 : 0 [ 0 ] |- V DV{ 0} d 1 : 1 [ AND ] D |- V d 0 and d 1 : 0 1 |- V d 0 : 0 |- V d 1 : 1 [ IN ] D |- V d 0 in d 1 : 1 |- V d 0 : 0 [ 0 ] |- V DV{ 0} d 1 : 1 DV( d 0 ) DV( d 1 ) = Ø Note: combined environment Note: only last environment Note: disjoint environment Note: type check
48
C LAUS B RABRAND [ 48 ] S EMANTICS (Q1,’06) S EP 21, 2006 Dynamic Semantics: Let B ++ Type Environment (Compile-time): Type = { bool, int } Environment (Runtime): Val = B Z, B = { tt, ff } Define type correspondence relation ‘~’: Note: v TEnv V = V Type v Env V = V Val v ~ v x V: v ( x ) = bool v ( x ) B v ( x ) = int v ( x ) Z ( 0 ~ 0 1 ~ 1 ) 0 [ 1 ] ~ 0 [ 1 ]
49
C LAUS B RABRAND [ 49 ] S EMANTICS (Q1,’06) S EP 21, 2006 Exp. Transition System for Let B ++ Let++ Expression Configurations: Let B ++ Expression Configurations: V Type: Env := i.e., “only type corresponding runtime environments” V = { | Env V FV( e ) V |- wfe e } T V = { | Env V z Z } only well-formed exps = { | Env FV( e ) V : |- V e : } T = { | Env r B Z } { ( V B Z ) | ~ }
50
C LAUS B RABRAND [ 50 ] S EMANTICS (Q1,’06) S EP 21, 2006 Def. Transition System for Let B ++ Let++ Definition Configurations: Let B ++ Definition Configurations: V Type: Env := i.e., “only type corresponding runtime environments” V = { | Env V FV( d ) V |- wfd d } only well-formed defs T V = { | Env V } = { | Env FV( d ) V : |- V d : } T = { | Env } { ( V B Z ) | ~ }
51
C LAUS B RABRAND [ 51 ] S EMANTICS (Q1,’06) S EP 21, 2006 Exp. Dynamic Semantics: Let B ++ SOS of Expressions for Let B ++: E.g. [LET]: - Basically substituting for V (from dyn. sem. of Let++) [ LET 2 ] [ LET 3 ] [ LET 1 ] Env |- let d in e let d’ in e |- d d’ |- let 0 in r r |- let 0 in e let 0 in e’ [ 0 ] |- e [ 0] e’ 0 ~ 00 ~ 0
52
C LAUS B RABRAND [ 52 ] S EMANTICS (Q1,’06) S EP 21, 2006 Def. Dynamic Semantics: Let B ++ SOS of Definitions for Let B ++: E.g [SEQ]: - Again, basically substituting for V (from dyn. sem. of Let++) [ SEQ 2 ] [ SEQ 3 ] [ SEQ 1 ] |- d 0 ; d 1 d 0 ’ ; d 1 |- d 0 d 0 ’ |- 0 ; 1 0 [ 1 ] |- 0 ; d 1 0 ; d 1 ’ [ 0 ] |- d 1 [ 0] d 1 ’ Env 0 ~ 00 ~ 0
53
C LAUS B RABRAND [ 53 ] S EMANTICS (Q1,’06) S EP 21, 2006 "Three minutes paper" Please spend three minutes writing down the most important things that you have learned today (now). After 1 day After 1 week After 3 weeks After 2 weeks Immediately
54
C LAUS B RABRAND S EMANTICS (Q1,’06) S EP 21, 2006 Next week (CCS): Concurrency and Communication Any Questions?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.