Download presentation
Presentation is loading. Please wait.
1
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 1 Regularized meshless approach for antiplane piezoelectricity problems with multiple inclusions J. H. Kao, J. T. Chen and K. H. Chen National Taiwan Ocean University Kun Shan University T0406 11, 25, 2006 10:35~12:05
2
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 2 Outlines Literature review Relation between MFS and RMM RMM for solving multiply-connected- domain problems Application on antiplane piezoelectricity problems Numerical examples Conclusions
3
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 3 Outlines Literature review Relation between MFS and RMM RMM for solving multiply-connected- domain problems Application on antiplane piezoelectricity problems Numerical examples Conclusions
4
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 4 Literature review Bleustein, 1968, antiplane piezoelectric dynamics problem. Pak, 1992, single circular inclusion, analytical solution, alternative method. Honein, 1995, two circular inclusions.
5
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 5 Literature review Chen and Chiang, 1997, solitary cavity or rigid inclusion, conformal mapping technique. Chao and Chang, 1999, double inclusions, complex variable theory. Wu et al., 2000, two circular inclusions, conformal mapping and the theorem of analytic continuation.
6
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 6 Outlines Literature review Relation between MFS and RMM RMM for solving multiply-connected- domain problems Application on antiplane piezoelectricity problems Numerical examples Conclusions
7
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 7 Neumann problem Dirichlet problem Relation between MFS and RMM Interior problem Exterior problem Kernel functions Introduction of MFS
8
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 8 Relation between MFS and RMM Single-layer Potentials Double-layer Potentials Laplace problem Introduction of MFS
9
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 9 Relation between MFS and RMM d=0 Introduction of MFS Convention MFS RMM
10
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 10 Relation between MFS and RMM Introduction of RMM =0
11
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 11 Introduction of Method of Fundamental Solutions Introduction of RMM
12
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 12 Relation between MFS and RMM Source points Collocation points Kernel functions MFS RMM fictitious boundary Real boundary Single-layer potentials Double-layer potentials Double-layer potentials Compared RMM with MFS
13
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 13 Outlines Literature review Relation between MFS and RMM RMM for solving multiply-connected- domain problems Application on antiplane piezoelectricity problems Numerical examples Conclusions
14
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 14 RMM for solving multiply-connected-domain problems Source point Collocation point Laplace problem
15
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 15 RMM for solving multiply-connected-domain problems Source point Collocation point Laplace problem
16
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 16 RMM for solving multiply-connected-domain problems Source point Collocation point Laplace problem
17
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 17 RMM for solving multiply-connected-domain problems Construction of influence matrices
18
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 18 Outlines Literature review Relation between MFS and RMM RMM for solving multiply-connected- domain problems Application on antiplane piezoelectricity problems Numerical examples Conclusions
19
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 19 Application on multiply-connected-domain problems Antiplane piezoelectricity problem
20
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 20 Application on multiply-connected-domain problems Decomposition of the problem
21
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 21 Application on multiply-connected-domain problems Inclusion Matrix Antiplane piezoelectricity problems
22
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 22 Outlines Literature review Relation between MFS and RMM RMM for solving multiply-connected- domain problems Application on antiplane piezoelectricity problems Numerical examples Conclusions
23
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 23 Application on multiply-connected-domain problems Nm -2 Cm -2 CV -1 m -1 Nm -2 Antiplane piezoelectric problems with multiple inclusions
24
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 24 Application on multiply-connected-domain problems Case 1: Single inclusion
25
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 25 Application on multiply-connected-domain problems Case 1: Single inclusion
26
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 26 Application on multiply-connected-domain problems Nm -2 Cm -2 CV -1 m -1 Nm -2 Antiplane piezoelectric problems with multiple inclusions
27
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 27 d Application on multiply-connected-domain problems Case 2: Two inclusions
28
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 28 Application on multiply-connected-domain problems d=10 d=1d=0.1 Case 2: Two inclusions
29
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 29 Application on multiply-connected-domain problems d=1 d=10 d=0.1 d=0.01 d=0.02 Case 2: Two inclusions
30
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 30 Outlines Literature review Relation between MFS and RMM RMM for solving multiply-connected- domain problems Application on antiplane piezoelectricity problems Numerical examples Conclusions
31
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 31 Conclusions Only the boundary nodes on the physical boundary are required by using proposed method. The proposed method can regularize singularity by using subtracting and adding-back technique. A systematic approach to solve the antiplane piezoelectricity problems with multiple inclusions was proposed successfully by using the regularized meshless method.
32
海洋大學力學聲響振動實驗室 http://msvlab.hre.ntou.edu.tw 32 The end Thanks for your attentions. Your comment is much appreciated. You can get more information on our website. http://msvlab.hre.ntou.edu.tw
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.