Download presentation
Presentation is loading. Please wait.
1
11 Introduction to Global Illumination Overview Overview Radiometry Radiometry The rendering equation The rendering equation Monte Carlo Monte Carlo Overview Overview Radiometry Radiometry The rendering equation The rendering equation Monte Carlo Monte Carlo
2
22 Image synthesis scene description scene description surface radiance surface radiance Deterministic and/or stochastic simulation. Deterministic and/or stochastic simulation.
3
33 Stages of light transport luminaire blocker Direct illumination Indirect illumination
4
44 An example of global illumination Lischinski, Tampieri, and Greenberg 1993
5
55 Photo-realistic rendering
6
66
7
77
8
88 Types of surface scattering diffuse directional diffuse specular
9
99 Directional dependence highly directional
10
1010 Defining radiance dAdA dAdA dd dd r r u u f (r,u) cos dA d power crossing surface f (r,u) cos dA d power crossing surface Classical Definition Measure-Theoretic Radiant energy defines a measure on R 3 x S 2. Radiant energy defines a measure on R 3 x S 2. The associated density function is radiance. The associated density function is radiance.
11
1111 Definition of radiance x x (x, ) f f is a scalar density function is a scalar density function radiance
12
1212 dA Definition of radiance watts m 2 sr dd dd watts m2m2 m2m2 sr (x, ) dA d f f power =
13
1313 Power from radiance dA Integrate over solid angle... Integrate over solid angle... and surface
14
1414 IrradianceIrradiance dA power per unit area power per unit area
15
1515 IrradianceIrradiance dA weighted integral over solid angle weighted integral over solid angle watts m2m2 m2m2
16
1616 Simulating reflected light irradiance dd dd x x
17
1717 Simulating reflected light irradiance radiance dfdf dfdf dd dd x x
18
1818 dfdf dfdf dd dd df d x x
19
1919 dfdf dfdf dd dd df ( ’, ) d x x ’’ ’’
20
2020 dfdf dfdf dd dd x x watt m2m2 m2m2 m 2 sr
21
2121 dfdf dfdf dd dd df ( ’, ) d x x BRDF [sr -1 ]
22
2222 dfdf dfdf f ’f ’ f ’f ’ df = ( ’, ) f ’ cos ’ d ’ d’d’ d’d’ ’’ ’’ x x
23
2323 f f f = ( ’, ) f ’ cos ’ d ’ x x
24
2424 f f x x
25
2525 Formulating a balance equation light leaving a surface light leaving a surface reflected light reflected light emitted light emitted light = = + + EasyEasyHardHard
26
2626 r’r’ r’r’ r ’’ u’u’ u’u’ u u Classical formulation Balance equation in terms of radiance [Polyak, 1960] solid angle source term f f ( ( r r ' ',, u u ) ) f f 0 0 ( ( r r ' ',, u u ) ) k k ( ( r r ' ' ; ; u u ' ' u u ) ) f f ( ( r r ' ' ' ',, u u ' ' ) ) cos d d ( ( u u ' ' ) ) measure on sphere
27
2727 Classical formulation Important features of the classical formulation: f f ( ( r r ' ',, u u ) ) f f 0 0 ( ( r r ' ',, u u ) ) k k ( ( r r ' ' ; ; u u ' ' u u ) ) f f ( ( r r ' ' ' ',, u u ' ' ) ) cos d d ( ( u u ' ' ) ) new measure implicit function r’r’ r’r’ r ’’ u’u’ u’u’ u u The point r ’’ depends on the point r ’ and the direction u ’. The point r ’’ depends on the point r ’ and the direction u ’. only part of the domain
28
2828 Two linear operators f (r,u’) d d ( ( u u ’)’) ’)’) k (r;u’ u) ( K f ) (r,u) ( G f ) (r,u) f (r’,u) “cosine weighted” measure measure implicit function r’r’ r’r’ r ’’ u’u’ u’u’ u u
29
2929 Linear operators for global illumination Field Radiance Operator Operator GG KK Local Reflection Operator Operator surface radiance field radiance surface radiance
30
3030 Another way to write the rendering equation f = s + KG f f = s + KG f Local Reflection Operator Operator SourceSource RadianceRadiance “Global”Operator“Global”Operator
31
3131 Operator norms || K || p < 1 || G || p = 1 1) First law of thermodynamics 2) Second law of thermodynamics 3) Constancy of radiance along rays
32
3232 IrradianceIrradiance dA weighted integral over solid angle weighted integral over solid angle watts m2m2 m2m2
33
3333 A vector form of irradiance Integrate vectors over solid angle Integrate vectors over solid angle vector irradiance or light vector vector irradiance or light vector r r
34
3434 Lambert’s formula for irradiance ii ii ii ii Vector Irradiance r M M 2 2 i i i i r r polygonalLambertianluminairepolygonalLambertianluminaire P P
35
3535 Ideal diffuse reflection Compute using Lambert’s formula
36
3636 Ideal diffuse reflection Boundary integral Boundary integral Eye
37
3737 Ideal specular reflection Compute using ray tracing
38
3838 Ideal specular reflection Eye
39
3939 Glossy reflection Use extended Lambert’s formula
40
4040 Glossy reflection Numerical quadrature Numerical quadrature Eye
41
4141 Glossy reflection Monte Carlo Eye
42
4242 Boundary integral for glossy reflection boundary integral boundary integral Eye
43
4343 Applications of directional scattering glossytransmissionglossytransmission glossyreflectionglossyreflection directionalemissiondirectionalemission luminaireluminaire
44
4444 A range of glossy reflections 10th-order moment 10th-order moment 45th-order moment 45th-order moment 400th-order moment 400th-order moment
45
4545 Comparison with Monte Carlo Region used for comparison Region used for comparison order 65 order 300 order 1000
46
4646 Comparison with Monte Carlo order 65 order 300 order 1000
47
4747 Monte Carlo integration estimateirradianceestimateirradiance luminaireluminaire blockerblocker
48
4848 Advantages of Monte Carlo Arbitrarily complex environments Arbitrarily complex environments Arbitrary reflectance functions Arbitrary reflectance functions Small memory requirements Small memory requirements Easily to distribute Easily to distribute Relatively easy to implement Relatively easy to implement Arbitrarily complex environments Arbitrarily complex environments Arbitrary reflectance functions Arbitrary reflectance functions Small memory requirements Small memory requirements Easily to distribute Easily to distribute Relatively easy to implement Relatively easy to implement
49
4949 Monte Carlo sampling methods HemisphereHemispherePolygonPolygon PhongdistributionPhongdistribution
50
5050 Light-ray tracing luminaire Rays represent photons that deposit energy on surfaces. No inverse-square law here! Rays represent photons that deposit energy on surfaces. No inverse-square law here!
51
5151 Path tracing At each scattering event, estimate indirect irradiance with a single ray; continue recursively. At each scattering event, estimate indirect irradiance with a single ray; continue recursively. luminaire eye
52
5252 Bidirectional path tracing Simultaneously follow paths from the light and the eye, looking for points that can “see” each other. Simultaneously follow paths from the light and the eye, looking for points that can “see” each other. luminaire eye
53
5353 Metropolis path tracing Start with a path from eye to luminaire, then integrate over others by perturbing to nearby paths. Start with a path from eye to luminaire, then integrate over others by perturbing to nearby paths. luminaire eye
54
5454 A Taxonomy of Errors Discrete Equation ApproximationApproximation Exact Equation Perturbed Equation PerturbationsPerturbations DiscretizationDiscretization ComputationComputation Radiance Function Space
55
5555 Features of surface illumination luminaireluminaire blockerblocker gradientsgradients isolux contours extremaextrema
56
5656 An example of meshing A simple environment A simple environment The underlying mesh The underlying mesh
57
5757 Classical balance equation (x, ’ ) f(x’, ’) cos d ’ ∫ ∫ f(x, ) = s(x, ) + A point on a distant visible surface A point on a distant visible surface radianceradiance
58
5858 The change is a “pullback” The 2-form on the sphere is pulled back to the surface The 2-form on the sphere is pulled back to the surface x x
59
5959 Change of variables d = d A cos ’ r 2r 2 r 2r 2 differential solid angle differential differentialareadifferentialarea
60
6060 Kajiya’s rendering equation e(x,x’) + (x,x’,x’’) I(x’,x’’) dx’’ ∫ ∫ I(x,x’) = g(x,x’) S S x, x’, x’’ are points on surfaces I = unknown intensity function
61
6161 Kajiya’s rendering equation e(x,x’) + (x,x’,x’’) I(x’,x’’) dx’’ ∫ ∫ I(x,x’) = g(x,x’) transport intensity geometry term transportemittancetransportemittance scattering function
62
6262 Power from transport intensity dx Integrate over two surfaces Integrate over two surfaces dx’ source receiver
63
6363 Radiance & transport intensity radiance transport intensity watts m 2 sr watts m4m4 m4m4
64
6464 Radiance & transport intensity radiance transport intensity invariant along lines in free space invariant along lines in free space obeys inverse square law obeys inverse square law defined everywhere defined everywhere defined only at surfaces defined only at surfaces
65
6565 Another way to write the rendering equation RadianceRadiance SourceSource TransportOperatorTransportOperator f = s + M f f = s + M f
66
6666 The formal “solution” to the rendering equation f = ( I - M ) s f = ( I - M ) s IdentityoperatorIdentityoperator
67
6767 The Neumann series f = s + M s + M 2 s + f = s + M s + M 2 s +...
68
6868 L p -norms for radiance functions d d m m ( ( r r ) ) | f (r,u) | p s2s2 s2s2 M M d d ( ( u u ) ) || f || p = [ [ ] ] “cosine weighted” measure measure 1 1 p p The collection of all functions with finite L p -norm is a Banach space The collection of all functions with finite L p -norm is a Banach space L L p p m m
69
6969 Significance of the L p -norms total power watts symbol meaning units 1 1 f f rms radiance watts m sr 2 2 f f maximum radiance watts m 2 sr f f
70
7070 The L 1 -norm of K K K 1 1 max r r u u ' ' k k ( ( r r ; ; u u ' ' u u ) ) d d ( ( u u ) ) maximal directional-hemispherical reflectance over all r and u ' maximal directional-hemispherical reflectance over all r and u ' dd dd u'u' u'u' r r
71
7171 The L -norm of K max r r u u ' ' k k ( ( r r ; ; u u ' ' u u ) ) d d ( ( u u ) ) maximal hemispherical-directional reflectance over all r and u ' maximal hemispherical-directional reflectance over all r and u ' dd dd K K r r u'u' u'u'
72
7272 The L p -norms of K energy conservation K K 1 1 K K p p K K 1 1 K K reciprocity K K p p K K K K 1 1 ,, max { } } convexity
73
7373 The G operator Surface radiance function Surface radiance function An enclosure. Equivalent flow through fictitious boundary Equivalent flow through fictitious boundary
74
7474 Hilbert adjoint operators K* = K K* = K G* = G G* = G M = I - KG M = I - KG M* = I - GK M* = I - GK SinceSinceandand it follows that
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.