Download presentation
Presentation is loading. Please wait.
1
CHE-300Review nomenclature syntheses reactions mechanisms
2
Alkanes Alkyl halides Alcohols Ethers Alkenes conjugated dienes Alkynes Alicyclics Epoxides
3
Alkanes Nomenclature Syntheses 1. reduction of alkene (addition of hydrogen) 2. reduction of an alkyl halide a) hydrolysis of a Grignard reagent b) with an active metal and acid 3. Corey-House Synthesis Reactions 1. halogenation 2. combustion (oxidation) 3. pyrolysis (cracking)
4
Alkanes, nomenclature CH 3 CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 CH 3 CHCH 2 CH 2 CH 3 (n-hexane) (isohexane) n-hexane2-methylpentane CH 3 CH 3 CH 3 CH 2 CHCH 2 CH 3 CH 3 CCH 2 CH 3 (no common name) CH 3 3-methylpentane (neohexane) 2,2-dimethylbutane CH 3 CH 3 CHCHCH 3 CH 3 (no common name) 2,3-dimethylbutane
5
Alkanes, syntheses 1. Addition of hydrogen (reduction). | | | | — C = C — + H 2 + Ni, Pt, or Pd — C — C — | | H H Requires catalyst. CH 3 CH=CHCH 3 + H 2, Ni CH 3 CH 2 CH 2 CH 3 2-butene n-butane
6
2.Reduction of an alkyl halide a) hydrolysis of a Grignard reagent (two steps) i) R—X + Mg RMgX (Grignard reagent) ii) RMgX + H 2 O RH + Mg(OH)X SB SA WA WB CH 3 CH 2 CH 2 -Br + Mg CH 3 CH 2 CH 2 -MgBr n-propyl bromiden-propyl magnesium bromide CH 3 CH 2 CH 2 -MgBr + H 2 O CH 3 CH 2 CH 3 + Mg(OH)Br propane
7
b)with an active metal and an acid R—X + metal/acid RH active metals = Sn, Zn, Fe, etc. acid = HCl, etc. (H + ) CH 3 CH 2 CHCH 3 + Sn/HCl CH 3 CH 2 CH 2 CH 3 + SnCl 2 Cl sec-butyl chloriden-butane CH 3 CH 3 CH 3 CCH 3 + Zn/H + CH 3 CHCH 3 + ZnBr 2 Br tert-butyl bromideisobutane
8
3. Corey-House Synthesis CH 3 CH 3 CH 3 CH 3 CH-Br + Li CH 3 CH-Li + CuI (CH 3 CH) 2 -CuLi isopropyl bromide CH 3 CH 3 (CH 3 CH) 2 -CuLi + CH 3 CH 2 CH 2 -Br CH 3 CH-CH 2 CH 2 CH 3 2-methylpentane (isohexane) mechanism = S N 2 Note: the R´X should be a 1 o or methyl halide for the best yields of the final product.
9
Alkanes, reactions 1. Halogenation R-H + X 2, heat or hv R-X + HX a) heat or light required for reaction. b) X 2 : Cl 2 > Br 2 I 2 c) yields mixtures d) H: 3 o > 2 o > 1 o > CH 4 e) bromine is more selective f) free radical substitution
10
CH 3 CH 2 CH 2 CH 3 + Br 2, hv CH 3 CH 2 CH 2 CH 2 -Br 2% n-butanen-butyl bromide + CH 3 CH 2 CHCH 3 98% Br sec-butyl bromide CH 3 CH 3 CH 3 CHCH 3 + Br 2, hv CH 3 CHCH 2 -Br <1% isobutane isobutyl bromide + CH 3 CH 3 CCH 3 99% Br tert-butyl bromide
11
Alkyl halides nomenclature syntheses 1. from alcohols a) HX b) PX 3 2. halogenation of certain alkanes 3. addition of hydrogen halides to alkenes 4. addition of halogens to alkenes 5. halide exchange for iodide reactions 1. nucleophilic substitution 2. dehydrohalogenation 3. formation of Grignard reagent 4. reduction
12
Alkyl halides, nomenclature CH 3 CH 3 CH 3 CHCH 2 CHCH 3 CH 3 CCH 3 Br I 2-bromo-4-methylpentanetert-butyl iodide 2-iodo-2-methylpropane 2 o 3 o CH 3 Cl-CHCH 2 CH 3 sec-butyl chloride 2-chlorobutane 2 o
13
Alkyl halides, syntheses 1. From alcohols a)With HX R-OH + HX R-X + H 2 O i) HX = HCl, HBr, HI ii) may be acid catalyzed (H + ) iii) ROH: 3 o > 2 o > CH 3 > 1 o (3 o /2 o – S N 1; CH 3 /1 o – S N 2) iv) rearrangements are possible except with most 1 o ROH
14
CH 3 CH 2 CH 2 CH 2 -OH + NaBr, H 2 SO 4, heat CH 3 CH 2 CH 2 CH 2 -Br n-butyl alcohol (HBr)n-butyl bromide 1-butanol1-bromobutane CH 3 CH 3 CH 3 CCH 3 + HCl CH 3 CCH 3 OH Cl tert-butyl alcoholtert-butyl chloride 2-methyl-2-propanol2-chloro-2-methylpropane CH 3 -OH + HI, H +,heat CH 3 -I methyl alcohol methyl iodide methanol iodomethane
15
…from alcohols: b) PX 3 i) PX 3 = PCl 3, PBr 3, P + I 2 ii) ROH: CH 3 > 1 o > 2 o iii) no rearragements CH 3 CH 2 -OH + P, I 2 CH 3 CH 2 -I ethyl alcohol ethyl iodide ethanol iodoethane CH 3 CH 3 CH 3 CHCH 2 -OH + PBr 3 CH 3 CHCH 2 -Br isobutyl alcohol isobutyl bromide 2-methyl-1-propanol 1-bromo-2-methylpropane
16
2.Halogenation of certain hydrocarbons. R-H + X 2, Δ or hν R-X + HX (requires Δ or hν; Cl 2 > Br 2 (I 2 NR); 3 o >2 o >1 o ) yields mixtures! In syntheses, limited to those hydrocarbons that yield only one monohalogenated product. CH 3 CH 3 CH 3 CCH 3 + Cl 2, heat CH 3 CCH 2 -Cl CH 3 CH 3 neopentane neopentyl chloride 2,2-dimethylpropane 1-chloro-2,2-dimethylpropane
17
5.Halide exchange for iodide. R-X + NaI, acetone R-I + NaX i) R-X = R-Cl or R-Br ii) NaI is soluble in acetone, NaCl/NaBr are insoluble. CH 3 CH 2 CH 2 -Br + NaI, acetone CH 3 CH 2 CH 2 -I n-propyl bromide n-propyl idodide 1-bromopropane 1-idodopropane iii) S N 2 R-X should be 1 o or CH 3
18
Reactions of alkyl halides: 1.Nucleophilic substitution Best with 1 o or CH 3 !!!!!! R-X + :Z - R-Z + :X - 2.Dehydrohalogenation R-X + KOH(alc) alkene(s) 3.Preparation of Grignard Reagent R-X + Mg RMgX 4.Reduction R-X + Mg RMgX + H 2 O R-H R-X + Sn, HCl R-H
19
1. Nucleophilic substitution R-X + :OH - ROH + :X - alcohol R-X + H 2 O ROH + HX alcohol R-X + :OR´ - R-O-R´ + :X - ether R-X + - :C CR´ R-C CR´ + :X - alkyne R-X + :I - R-I + :X - iodide R-X + :CN - R-C N + :X - nitrile R-X + :NH 3 R-NH 2 + HXprimary amine R-X + :NH 2 R´ R-NHR´ + HXsecondary amine R-X + :SH - R-SH + :X - thiol R-X + :SR´ R-SR´ + :X - thioether Etc. Best when R-X is CH 3 or 1 o ! S N 2
20
2. dehydrohalogenation of alkyl halides | | | | — C — C — + KOH(alc.) — C = C — + KX + H 2 O | | H X a)RX: 3 o > 2 o > 1 o b)no rearragement c)may yield mixtures d)Saytzeff orientation e)element effect f)isotope effect g)rate = k [RX] [KOH] h)Mechanism = E2
21
CH 3 CHCH 3 + KOH(alc) CH 3 CH=CH 2 Br isopropyl bromidepropylene CH 3 CH 2 CH 2 CH 2 -Br + KOH(alc) CH 3 CH 2 CH=CH 2 n-butyl bromide 1-butene CH 3 CH 2 CHCH 3 + KOH(alc) CH 3 CH 2 CH=CH 2 Br 1-butene 19% sec-butyl bromide + CH 3 CH=CHCH 3 2-butene 81%
22
3. preparation of Grignard reagent CH 3 CH 2 CH 2 -Br + Mg CH 3 CH 2 CH 2 -MgBr n-propyl bromiden-propyl magnesium bromide 4.reduction CH 3 CH 2 CH 2 -Br + Mg CH 3 CH 2 CH 2 -MgBr CH 3 CH 2 CH 2 -MgBr + H 2 O CH 3 CH 2 CH 3 + Mg(OH)Br propane CH 3 CH 2 CHCH 3 + Sn/HCl CH 3 CH 2 CH 2 CH 3 + SnCl 2 Cl sec-butyl chloriden-butane
23
Alcohols nomenclature syntheses 1. oxymercuration-demercuration 2. hydroboration-oxidation 3. 4. hydrolysis of some alkyl halides reactions 1. HX 2. PX 3 3. dehydration 4. as acids 5. ester formation 6. oxidation
24
Alcohols, nomenclature CH 3 CH 3 CH 3 CHCH 2 CHCH 3 CH 3 CCH 3 OH OH 4-methyl-2-pentanoltert-butyl alcohol 2-methyl-2-propanol 2 o 3 o CH 3 HO-CHCH 2 CH 3 CH 3 CH 2 CH 2 -OH sec-butyl alcoholn-propyl alcohol 2-butanol 1-propanol 2 o 1 o
25
Alcohols, syntheses 1. oxymercuration-demercuration: a)Markovnikov orientation. b)100% yields. c)no rearrangements CH 3 CH 2 CH=CH 2 + H 2 O, Hg(OAc) 2 ; then NaBH 4 CH 3 CH 2 CHCH 3 OH
26
2. hydroboration-oxidation: Anti-Markovnikov orientation. 100% yields. no rearrangements CH 3 CH 2 CH=CH 2 + (BH 3 ) 2 ; then H 2 O 2, NaOH CH 3 CH 2 CH 2 CH 2 -OH
27
Reaction of alcohols 1. with HX: R-OH + HX R-X + H 2 O a) HX: HI > HBr > HCl b) ROH: 3 o > 2 o > CH 3 > 1 o S N 1/S N 2 c) May be acid catalyzed d) Rearrangements are possible except with most 1 o alcohols.
28
CH 3 CH 2 CH 2 CH 2 -OH + NaBr, H 2 SO 4, heat CH 3 CH 2 CH 2 CH 2 -Br n-butyl alcohol (HBr)n-butyl bromide 1-butanol1-bromobutane CH 3 CH 3 CH 3 CCH 3 + HCl CH 3 CCH 3 OH Cl tert-butyl alcoholtert-butyl chloride 2-methyl-2-propanol2-chloro-2-methylpropane CH 3 -OH + HI, H +,heat CH 3 -I methyl alcohol methyl iodide methanol iodomethane
29
2.With PX 3 ROH + PX 3 RX a)PX 3 = PCl 3, PBr 3, P + I 2 b)No rearrangements c)ROH: CH 3 > 1 o > 2 o CH 3 CH 3 CH 3 CCH 2 -OH + PBr 3 CH 3 CCH 2 -Br CH 3 CH 3 neopentyl alcohol 2,2-dimethyl-1-bromopropane
30
3.Dehydration of alcohols | | | | — C — C — acid, heat — C = C — + H 2 O | | H OH a)ROH: 3 o > 2 o > 1 o b)acid is a catalyst c)rearrangements are possible d)mixtures are possible e)Saytzeff f)mechanism is E1
31
CH 3 CH 2 -OH + 95% H 2 SO 4, 170 o C CH 2 =CH 2 CH 3 CH 3 CH 3 CCH 3 + 20% H 2 SO 4, 85-90 o C CH 3 C=CH 2 OH CH 3 CH 2 CHCH 3 + 60% H 2 SO 4, 100 o C CH 3 CH=CHCH 3 OH + CH 3 CH 2 CH=CH 2 CH 3 CH 2 CH 2 CH 2 -OH + H +, 140 o C CH 3 CH 2 CH=CH 2 rearrangement! + CH 3 CH=CHCH 3
32
4)As acids. a)With active metals: ROH + Na RONa + ½ H 2 CH 3 CH 2 -OH + K CH 3 CH 2 -O - K + + H 2 b)With bases: CH 4 < NH 3 < ROH < H 2 O < HF ROH + NaOH NR! CH 3 CH 2 OH + CH 3 MgBr CH 4 + Mg(Oet)Br
33
5.Ester formation. CH 3 CH 2 -OH + CH 3 CO 2 H, H + CH 3 CO 2 CH 2 CH 3 + H 2 O CH 3 CH 2 -OH + CH 3 COCl CH 3 CO 2 CH 2 CH 3 + HCl CH 3 -OH + CH 3 SO 2 Cl CH 3 SO 3 CH 3 + HCl Esters are alkyl “salts” of acids.
34
6.Oxidation Oxidizing agents: KMnO 4, K 2 Cr 2 O 7, CrO 3, NaOCl, etc. Primary alcohols: CH 3 CH 2 CH 2 -OH + KMnO 4, etc. CH 3 CH 2 CO 2 H carboxylic acid Secondary alcohols: OH O CH 3 CH 2 CHCH 3 + K 2 Cr 2 O 7, etc. CH 3 CH 2 CCH 3 ketone Teriary alcohols: no reaction.
35
Primary alcohols can also be oxidized to aldehydes: CH 3 CH 2 CH 2 -OH + C 5 H 5 NHCrO 3 Cl CH 3 CH 2 CHO pyridinium chlorochromate aldehyde or CH 3 CH 2 CH 2 -OH + K 2 Cr 2 O 7, special conditions
36
Ethers nomenclature syntheses 1. Williamson Synthesis 2. alkoxymercuration-demercuration reactions 1. acid cleavage
37
EthersR-O-R or R-O-R´ Nomenclature: simple ethers are named: “alkyl alkyl ether” “dialkyl ether” if symmetric CH 3 CH 3 CH 3 CH 2 -O-CH 2 CH 3 CH 3 CH-O-CHCH 3 diethyl ether diisopropyl ether
38
R-OH + Na R-O - Na + R-O-R´ R´-OH + HX R´-X (CH 3 ) 2 CH-OH + Na (CH 3 ) 2 CH-O - Na + + CH 3 CH 2 CH 2 -O-CH(CH 3 ) 2 CH 3 CH 2 CH 2 -OH + HBr CH 3 CH 2 CH 2 -Br isopropyl n-propyl ether note: the alkyl halide is primary! 1. Williamson Synthesis of Ethers
39
CH 3 CH 2 CH 2 -OH + Na CH 3 CH 2 CH 2 -ONa + CH 3 CH 2 CH 2 -O-CH(CH 3 ) 2 (CH 3 ) 2 CH-OH + HBr (CH 3 ) 2 CH-Br 2 o The product of this attempted Williamson Synthesis using a secondary alkyl halide results not in the desired ether but in an alkene! The alkyl halide in a Williamson Synthesis must beCH 3 or 1 o !
40
2. alkoxymercuration-demercuration: a)Markovnikov orientation. b)100% yields. c)no rearrangements CH 3 CH=CH 2 + CH 3 CHCH 3, Hg(TFA) 2 ; then NaBH 4 OH CH 3 CH 3 CH 3 CH-O-CHCH 3 diisopropyl ether Avoids the elimination with 2 o /3 o RX in Williamson Synthesis.
41
Reactions, ethers: 1.Acid cleavage. R-O-R´ + (conc) HX, heat R-X + R´-X CH 3 CH 2 -O-CH 2 CH 3 + HBr, heat 2 CH 3 CH 2 -Br
42
Alkenes nomenclature syntheses 1. dehydrohalogenation of an alkyl halide 2. dehydration of an alcohol 3. dehalogenation of a vicinal dihalide 4. reduction of an alkyne reactions 1. addition of hydrogen10. hydroboration-oxidation 2. addition of halogens11. addition of free radicals 3. addition of hydrogen halides12. polymerization 4. addition of sulfuric acid13. addition of carbenes 5. addition of water14. epoxidation 6. halohydrin formation15. hydroxylation 7. dimerization16. allylic halogenation 8. alkylation17. ozonolysis 9. oxymercuration-demercuration18. vigorous oxidation
43
Alkenes, nomenclature C 3 H 6 propylene CH 3 CH=CH 2 C 4 H 8 butylenesCH 3 CH 2 CH=CH 2 α-butylene 1-butene CH 3 CH 3 CH=CHCH 3 CH 3 C=CH 2 β-butylene isobutylene 2-butene2-methylpropene
44
* ** * (Z)-3-methyl-2-pentene ( 3-methyl-cis-2-pentene ) (E)-1-bromo-1-chloropropene
45
1. dehydrohalogenation of alkyl halides | | | | — C — C — + KOH(alc.) — C = C — + KX + H 2 O | | H X a)RX: 3 o > 2 o > 1 o b)no rearragement c)may yield mixtures d)Saytzeff orientation e)element effect f)isotope effect g)rate = k [RX] [KOH] h)Mechanism = E2
46
CH 3 CHCH 3 + KOH(alc) CH 3 CH=CH 2 Br isopropyl bromidepropylene CH 3 CH 2 CH 2 CH 2 -Br + KOH(alc) CH 3 CH 2 CH=CH 2 n-butyl bromide 1-butene CH 3 CH 2 CHCH 3 + KOH(alc) CH 3 CH 2 CH=CH 2 Br 1-butene 19% sec-butyl bromide + CH 3 CH=CHCH 3 2-butene 81%
47
2.dehydration of alcohols: | | | | — C — C — acid, heat — C = C — + H 2 O | | H OH a)ROH: 3 o > 2 o > 1 o b)acid is a catalyst c)rearrangements are possible d)mixtures are possible e)Saytzeff f)mechanism is E1
48
CH 3 CH 2 -OH + 95% H 2 SO 4, 170 o C CH 2 =CH 2 CH 3 CH 3 CH 3 CCH 3 + 20% H 2 SO 4, 85-90 o C CH 3 C=CH 2 OH CH 3 CH 2 CHCH 3 + 60% H 2 SO 4, 100 o C CH 3 CH=CHCH 3 OH + CH 3 CH 2 CH=CH 2 CH 3 CH 2 CH 2 CH 2 -OH + H +, 140 o C CH 3 CH 2 CH=CH 2 rearrangement! + CH 3 CH=CHCH 3
49
3.dehalogenation of vicinal dihalides | | | | — C — C — + Zn — C = C — + ZnX 2 | | X X eg. CH 3 CH 2 CHCH 2 + Zn CH 3 CH 2 CH=CH 2 + ZnBr 2 Br Br Not generally useful as vicinal dihalides are usually made from alkenes. May be used to “protect” a carbon-carbon double bond.
50
CH 3 H \ / Na or Li C = C anti- NH 3 (liq) / \ H CH 3 trans-2-butene CH 3 C CCH 3 H H \ / H 2, Pd-C C = C syn- Lindlar catalyst / \ CH 3 CH 3 cis-2-butene 4. reduction of alkyne
51
Alkenes, reactions 1. Addition of hydrogen (reduction). | | | | — C = C — + H 2 + Ni, Pt, or Pd — C — C — | | H H a) Requires catalyst. b)#1 synthesis of alkanes CH 3 CH=CHCH 3 + H 2, Ni CH 3 CH 2 CH 2 CH 3 2-butene n-butane
52
2) Addition of halogens. | | | | — C = C — + X 2 — C — C — | | X X a)X 2 = Br 2 or Cl 2 b)test for unsaturation with Br 2 CH 3 CH 2 CH=CH 2 + Br 2 /CCl 4 CH 3 CH 2 CHCH 2 Br Br 1-butene 1,2-dibromobutane
53
3.Addition of hydrogen halides. | | | | — C = C — + HX — C — C — | | H X a)HX = HI, HBr, HCl b)Markovnikov orientation CH 3 CH=CH 2 + HI CH 3 CHCH 3 I CH 3 CH 3 CH 2 C=CH 2 + HBr CH 3 CCH 3 Br
54
4.Addition of sulfuric acid. | | | | — C = C — + H 2 SO 4 — C — C — | | H OSO 3 H alkyl hydrogen sulfate Markovnikov orientation. CH 3 CH=CH 2 + H 2 SO 4 CH 3 CHCH 3 O O-S-O OH
55
5.Addition of water. | | | | — C = C — + H 2 O, H + — C — C — | | H OH a) requires acid b)Markovnikov orientation c)low yield CH 3 CH 2 CH=CH 2 + H 2 O, H + CH 3 CH 2 CHCH 3 OH
56
6.Addition of halogens + water (halohydrin formation): | | | | — C = C — + X 2, H 2 O — C — C — + HX | | OH X a)X 2 = Br 2, Cl 2 b)Br 2 = electrophile CH 3 CH=CH 2 + Br 2 (aq.) CH 3 CHCH 2 + HBr OH Br
57
7.Dimerization: CH 3 CH 3 CH 3 CH 3 C=CH 2 + H 2 SO 4, 80 o C CH 3 C-CH=CCH 3 CH 3 + CH 3 CH 3 CH 3 C-CH 2 C=CH 2 CH 3
58
8.Alkylation: CH 3 CH 3 CH 3 C=CH 2 + CH 3 CHCH 3 + HF, 0 o C CH 3 CH 3 CH 3 C-CH 2 CHCH 3 CH 3 2,2,4-trimethylpentane ( “isooctane” )
59
9. oxymercuration-demercuration: a) Markovnikov orientation. b) 100% yields. c) no rearrangements CH 3 CH 2 CH=CH 2 + H 2 O, Hg(OAc) 2 ; then NaBH 4 CH 3 CH 2 CHCH 3 OH
60
With alcohol instead of water: alkoxymercuration-demercuration: | | | | — C =C — + ROH, Hg(TFA) 2 — C — C — | | OR HgTFA | | | | — C — C — + NaBH 4 — C — C — | | | | OR HgTFA OR H ether
61
10. hydroboration-oxidation: a)#2 synthesis of alcohols. b)Anti-Markovnikov orientation. c)100% yields. d)no rearrangements CH 3 CH 2 CH=CH 2 + (BH 3 ) 2 ; then H 2 O 2, NaOH CH 3 CH 2 CH 2 CH 2 -OH
62
11.Addition of free radicals. | | | | — C = C — + HBr, peroxides — C — C — | | H X a)anti-Markovnikov orientation. b)free radical addition CH 3 CH=CH 2 + HBr, peroxides CH 3 CH 2 CH 2 -Br
63
12.Polymerization. CH 2 =CH 2 + heat, pressure -(CH 2 CH 2 )- n n = 10,000+ polyethylene CH 3 CH=CH 2 polymerization -(CH 2 CH)- n CH 3 polypropylene CH 2 =CHCl poly… -(CH 2 CH)- n Cl polyvinyl chloride (PVC)
64
13.Addition of carbenes. | | | | — C = C — + CH 2 CO or CH 2 N 2, hν — C — C — CH 2 CH 2 “carbene” adds across the double bond | | — C = C — CH 2
65
14. Epoxidation. | | C 6 H 5 CO 3 H | | — C = C — + (peroxybenzoic acid) — C— C — O epoxide Free radical addition of oxygen diradical. | | — C = C — O
66
15. Hydroxylation. (mild oxidation) | | | | — C = C — + KMnO 4 — C — C — syn | | OH OH OH | | | | — C = C — + HCO 3 H — C — C — anti peroxyformic acid | | OH glycol
67
cis-2-butene + KMnO 2 meso-2,3-dihydroxybutane mp 34 o CH 3 H OH CH 3 trans-2-butene + KMnO 4 (S,S) & (R,R)-2,3-dihydroxybutane mp 19 o CH 3 H OH + HO H HO H H OH CH 3 CH 3 stereoselective and stereospecific
68
16.Allylic halogenation. | | | | | | — C = C — C — + X 2, heat — C = C — C — + HX | | H allyl X CH 2 =CHCH 3 + Br 2, 350 o C CH 2 =CHCH 2 Br + HBr a) X 2 = Cl 2 or Br 2 b) or N-bromosuccinimide (NBS)
69
17.Ozonolysis. | | | | — C = C — + O 3 ; then Zn, H 2 O — C = O + O = C — used for identification of alkenes CH 3 CH 3 CH 2 CH=CCH 3 + O 3 ; then Zn, H 2 O CH 3 CH 3 CH 2 CH=O + O=CCH 3
70
18.Vigorous oxidation. =CH 2 + KMnO 4, heat CO 2 =CHR + KMnO 4, heat RCOOH carboxylic acid =CR 2 + KMnO 4, heat O=CR 2 ketone
71
CH 3 CH 2 CH 2 CH=CH 2 + KMnO 4, heat CH 3 CH 2 CH 2 COOH + CO 2 CH 3 CH 3 CH 3 C=CHCH 3 + KMnO 4, heat CH 3 C=O + HOOCCH 3
72
Dienes nomenclature syntheses same as alkenes reactions same as alkenes special: conjugated dienes 1. more stable 2. preferred products of eliminations 3. give 1,2- & 1,4- addition products
73
(cumulated dienes are not very stable and are rare) isolated dienes are as you would predict, undergo addition reactions with one or two moles… conjugated dienes are unusual in that they: 1)are more stable than predicted 2)are the preferred products of eliminations 3)give 1,2- plus 1,4-addition products
74
nomenclature: CH 2 =CHCH=CH 2 CH 3 CH=CHCH 2 CH=CHCH 3 1,3-butadiene 2,5-heptadiene conjugated isolated 2-methyl-1,3-butadiene (isoprene) conjugated
75
isolated dienes: (as expected) 1,5-hexadiene CH 2 =CHCH 2 CH 2 CH=CH 2 + H 2, Ni CH 3 CH 2 CH 2 CH 2 CH=CH 2 CH 2 =CHCH 2 CH 2 CH=CH 2 + 2 H 2, Ni CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 CH 2 =CHCH 2 CH 2 CH=CH 2 + Br 2 CH 2 CHCH 2 CH 2 CH=CH 2 Br Br CH 2 =CHCH 2 CH 2 CH=CH 2 + HBr CH 3 CHCH 2 CH 2 CH=CH 2 Br CH 2 =CHCH 2 CH 2 CH=CH 2 + 2 HBr CH 3 CHCH 2 CH 2 CHCH 3 Br Br
76
conjugated dienes yield 1,2- plus 1,4-addition: CH 2 =CHCH=CH 2 + H 2, Ni CH 3 CH 2 CH=CH 2 + CH 3 CH=CHCH 3 CH 2 =CHCH=CH 2 + 2 H 2, Ni CH 3 CH 2 CH 2 CH 3 CH 2 =CHCH=CH 2 + Br 2 CH 2 CHCH=CH 2 + CH 2 CH=CHCH 2 Br Br Br Br CH 2 =CHCH=CH 2 + HBr CH 3 CHCH=CH 2 + CH 3 CH=CHCH 2 Br Br peroxides CH 2 =CHCH=CH 2 + HBr CH 2 CH=CHCH 3 + CH 2 CH 2 CH=CH 2 Br Br
77
Alkynes nomenclature syntheses 1. dehydrohalogenation of vicinal dihalides 2. coupling of metal acetylides with alkyl halides reactions 1. reduction 2. addition of halogens 3. addition of hydrogen halides 4. addition of water 5. as acids 6. with Ag + 7. oxidation
78
Alkynes, nomenclature HC CH ethyne acetylene CH 3 CH 3 CH 2 C CHHC CCHCH 2 CH 3 1-butyne 3-methyl-1-pentyne ethylacetylenesec-butylacetylene
79
Synthesis, alkynes: 1.dehydrohalogenation of vicinal dihalides H H H | | | — C — C — + KOH — C = C — + KX + H 2 O | | | X X X H | — C = C — + NaNH 2 — C C — + NaX + NH 3 | X
81
2.coupling of metal acetylides with 1 o /CH 3 alkyl halides R-C C - Na + + R´X R-C C-R´ + NaX a)S N 2 b)R´X must be 1 o or CH 3 X CH 3 C C - Li + + CH 3 CH 2 -Br CH 3 C CCH 2 CH 3
82
HC CH + 2 H 2, Pt CH 3 CH 3 [ HC CH + one mole H 2, Pt CH 3 CH 3 + CH 2 =CH 2 + HC CH ] H \ / Na or Li C = C anti- NH 3 (liq) / \ H — C C — \ / H 2, Pd-C C = C syn- Lindlar catalyst / \ H H Alkyne, reactions 1. Addition of hydrogen (reduction)
83
CH 3 H \ / Na or Li C = C anti- NH 3 (liq) / \ H CH 3 trans-2-butene CH 3 C CCH 3 H H \ / H 2, Pd-C C = C syn- Lindlar catalyst / \ CH 3 CH 3 cis-2-butene
84
2.Addition of X 2 X X X | | | — C C— + X 2 — C = C — + X 2 — C — C — | | | X X X Br Br Br CH 3 C CH + Br 2 CH 3 C=CH + Br 2 CH 3 -C-CH Br Br Br
85
3.Addition of hydrogen halides: H H X | | | — C C— + HX — C = C — + HX — C — C — | | | X H X a)HX = HI, HBr, HCl b)Markovnikov orientation Cl CH 3 C CH + HCl CH 3 C=CH 2 + HCl CH 3 CCH 3 Cl Cl
86
4.Addition of water. Hydration. O — C C — + H 2 O, H +, HgO — CH2 — C— H OH — C = C — “enol” keto-enol tautomerism Markovnikov orientation.
87
CH 3 CH 2 C CH + H 2 O, H 2 SO 4, HgO 1-butyne O CH 3 CH 2 CCH 3 2-butanone
88
5.As acids. terminal alkynes only! a)with active metals CH 3 C CH + Na CH 3 C C - Na + + ½ H 2 b)with bases CH 4 < NH 3 < HC CH < ROH < H 2 O < HF CH 3 C CH + CH 3 MgBr CH 4 + CH 3 C CMgBr SA SB WA WB
89
6.Ag + terminal alkynes only! CH 3 CH 2 C CH + AgNO 3 CH 3 CH 2 C C - Ag + CH 3 C CCH 3 + AgNO 3 NR (not terminal) formation of a precipitate is a test for terminal alkynes.
90
CH 3 CH 2 C CCH 3 + KMnO 4 CH 3 C CH + hot KMnO 4 CH 3 C CCH 3 + O 3 ; then Zn, H 2 O CH 3 CH 2 COOH + HOOCCH 3 CH 3 COOH + CO 2 2 CH 3 COOH 7. Oxidation
91
Alicyclics nomenclature syntheses like alkanes, alkenes, alcohols, etc. reactions as expected exceptions: cyclopropane/cyclobutane
92
methylcyclopentane 1,1-dimethylcyclobutane trans-1,2-dibromocyclohexane
93
cyclopentene 3-methylcyclohexene1,3-cyclobutadiene 1 2 3 4 5 6
94
Cycloalkanes, syntheses A. Modification of a cyclic compound: H 2, Ni Sn, HCl Mg; then H 2 O
95
Cycloalkanes, reactions: 1.halogenation 2. combustion 3. cracking 4. exceptions Cl 2, heat + HCl
96
exceptions: H 2, Ni, 80 o CH 3 CH 2 CH 3 Cl 2, FeCl 3 Cl-CH 2 CH 2 CH 2 -Cl H 2 O, H + CH 3 CH 2 CH 2 -OH conc. H 2 SO 4 CH 3 CH 2 CH 2 -OSO 3 H HI CH 3 CH 2 CH 2 -I
97
exceptions (cont.) +H 2, Ni, 200 o CH 3 CH 2 CH 2 CH 3
98
KOH(alc) H +, Δ Zn cyclohexene Cycloalkenes, syntheses
99
Cycloalkenes, reactions: 1.addition of H 2 10. hydroboration-oxid. 2.addition of X 2 11. addition of free radicals 3.addition of HX12. polymerization 4.addition of H 2 SO 4 13. addition of carbenes 5.addition of H 2 O,H + 14. epoxidation 6.addition of X 2 + H 2 O15. hydroxylation 7.dimerization16. allylic halogenation 8.alkylation17. ozonolysis 9.oxymerc-demerc.18. vigorous oxidation
100
H 2, Pt Br 2, CCl 4 HBr H 2 SO 4 H 2 O, H + Br 2 (aq.) dimerization trans-1,2-dibromocyclohexane Markovnikov
101
HF H 2 O,Hg(OAc) 2 NaBH 4 (BH 3 ) 2 H 2 O 2, NaOH HBr, perox. polymer. CH 2 CO,hv PBA Markovnikov anti-Markovnikov anti-Markovinikov
102
KMnO 4 HCO 3 H Br 2, heat O 3 Zn, H 2 O KMnO 4, heat O=CHCH 2 CH 2 CH 2 CH 2 CH=O HO 2 CCH 2 CH 2 CH 2 CH 2 CO 2 H cis-1,2-cylohexanediol trans-1,2-cyclohexanediol
103
Epoxides nomenclature syntheses 1. epoxidation of alkenes reactions 1. addition of acids 2. addition of bases
104
Epoxides, nomenclature ethylene oxide propylene oxide cyclopentene oxide (oxirane) (methyloxirane) C 6 H 5 CO 3 H Synthesis: β-butylene oxidecis-2-butene
105
epoxides, reactions: 1)acid catalyzed addition H 2 O, H + CH 3 CH 2 OH, H + HBr OH CH 2 OH OH CH 3 CH 2 -O-CH 2 CH 2 OH CH 2 Br
106
OH CH 2 OH CH 3 CH 2 -O-CH 2 CH 2 -OH H 2 N-CH 2 CH 2 -OH CH 3 CH 2 CH 2 CH 2 -OH 2. Base catalyzed addition
107
Mechanisms: Free radical substitution S N 2 S N 1 E2 E1 ionic electrophilic addition free radical electrophilic addition Memorize (all steps, curved arrow formalism, RDS) and know which reactions go by these mechanisms!
108
Free Radical Substitution Mechanism initiating step: 1)X—X 2 X propagating steps: 2) X + R—H H—X + R 3)R + X—X R—X + X 2), 3), 2), 3)… terminating steps: 4) 2 X X—X 5) R + X R—X 6) 2 R R—R
109
Substitution, nucleophilic, bimolecular (S N 2) CH 3 > 1 o > 2 o > 3 o
110
Substitution, nucleophilic, unimolecular (S N 1) 3 o > 2 o > 1 o > CH 3 1) 2)
111
Mechanism = elimination, bimolecular E2 3 o > 2 o > 1 o
112
Elimination, unimolecular E1 3 o > 2 o > 1 o
114
Free radical electrophilic addition of HBr: Initiating steps: 1) peroxide 2 radical 2) radical + HBr radical:H + Br (Br electrophile) Propagating steps: 3) Br + CH 3 CH=CH 2 CH 3 CHCH 2 -Br (2 o free radical) 4) CH 3 CHCH 2 -Br + HBr CH 3 CH 2 CH 2 -Br + Br 3), 4), 3), 4)… Terminating steps: 5)Br + Br Br 2 Etc.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.