Download presentation
Presentation is loading. Please wait.
1
Réduction de Modèles à l’Issue de la Théorie Cinétique Francisco CHINESTA LMSP – ENSAM Paris Amine AMMAR Laboratoire de Rhéologie, INPG Grenoble
2
The different scales The different scales r1r1 r2r2 r N+1 q1q1 q2q2 qNqN R Atomistic Brownian dynamics Kinetic theory: Fokker-PlanckFokker-Planck StochasticStochastic
3
Atomistic The 3 constitutive blocks:
4
Brownian dynamics r1r1 r2r2 r N+1 q1q1 q2q2 qNqN usually modeled from a random motion Beads equilibrium
5
r1r1 r2r2 r N+1 q1q1 q2q2 qNqN Kinetic theory: Fokker-PlanckFokker-Planck StochasticStochastic The Fokker-Planck formalism
6
Coming back to the macroscopic scale: Stress evaluation q F With F & R collinear: q F
7
Solving the deterministic Fokker-Planck equation Two new model reduction approaches
8
Model Reduction based on the Karhunen-Loève decomposition Continuous: Discretization: Karhunen-Loève:
9
Application in Computational Rheology Fokker-Planck discretisation 1 dof ! First assumption: Initial reduced approximation basis Fast simulation BUT bad results expected
10
Enrichment based on the use of the Krylov’s subspaces: an “a priori” strategy IFIFcontinue The enrichment increases the number of approximation functions BUT the Karhunen-Loève decomposition reduces it
11
FENE Model 300.000 FEM dof ~10 dof ~10 functions (1D, 2D or 3D) 3D 1D
12
It is time for dreaming! For N springs, the model is defined in a 3N+3+1 dimensional space !! ~ 10 approximation functions are enough r1r1 r2r2 r N+1 q1q1 q2q2 qNqN
13
BUT How defining those high-dimensional functions ? Natural answer: with a nodal description 1D 10 nodes = 10 function values
14
1D 2D >1000D r1r1 r2r2 r N+1 q1q1 q2q2 qNqN 80D 10 dof 10x10 dof 10 80 dof No function can be defined in a such space from a computational point of view !! F.E.M. 10 80 ~ presumed number of elemental particles in the universe !! ~ presumed number of elemental particles in the universe !!
15
Advanced deterministic approaches of Multidimensional Fokker-Planck equation Separated representation and Tensor product approximation bases q1q1 q2q2 q9q9 FEM GRID Our proposal Computing availability ~10 9
16
Example I - Projection:
17
Only 1D interpolations and 1D integrations! II - Enrichment:
18
q1q1 q2q2
19
q1q1 q2q2 q9q9 80 9 ~ 10 16 FEM dof 80x9 RM dof 10 40 FEM dof 100.000 RM dof 1D/9D 2D/10D
20
Solving the Stochastic representation of the Fokker-Planck equation New efficient solvers
21
Stochastic approaches … A way for solving the Fokker-Planck equation: (Ottinger & Laso) W : Wiener random process We need tracking a large ensemble of particles and control the statistical noise!
22
Fokker-Planck: Stochastique: BCF Brownian Configuration Fields
23
SFS in a simple shear flow Rouge: MDF 1000 ddl / pdt Bleu: BCF 100 BCF 1000 ddl / pdt Vert: Reduced BCF 100 BCF 4 ddl / pdt a11 t The reduced approximation basis is constructed from some snapshots computed on the averaged BFC distributions
24
Perspectives (réduction de deuxième génération) Séparation de variables ? Base commune pour les différents « configuration fields »?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.