Download presentation
Presentation is loading. Please wait.
1
COMP 170 L2 Page 1
2
COMP 170 L2 Page 2
3
COMP 170 L2 L10: Intro to Induction l Objective n Introduce induction from proof-by-smallest-counter-example Making use of small-problem/big-problem relationships in proofs Page 3
4
COMP 170 L2 Recap: 2010-03-30 l Given: (a) p(0) is True; (b) If n>0, then p(n-1) => p(n) l Conclusion: p(n) is True for all l Proof by Smallest Counter Example Page 4
5
COMP 170 L2 Outline l Weak induction l Strong induction Page 5
6
COMP 170 L2 Weak Principle of Math Induction l We have actually proved: Page 6
7
COMP 170 L2 Weak Principle of Math Induction l Suppose b=0 l Intuitively n p(0) n p(0) => p(1) n p(1) => p(2) n p(2) => p(3), n …. n So, p(n) is True for all n>=0 Page 7
8
COMP 170 L2 Inductive Proof l Base Case (n=b): Show that p(b) is True l Induction (n>b): Show p(n-1) => p(n) n Induction Hypothesis p(n-1) is True n Inductive Step: p(n) is True l Inductive conclusion: n p(n) is True for all n>=b Page 8
9
COMP 170 L2 Page 9
10
COMP 170 L2 Page 10
11
COMP 170 L2
12
Outline l Weak induction l Strong induction Page 12
13
COMP 170 L2 Review: Weak Induction l Suppose b=0 l Intuitively n p(0) n p(0) => p(1) n p(1) => p(2) n p(2) => p(3), n …. n So, p(n) is True for all n>=0 Page 13
14
COMP 170 L2 l Suppose b=0 l Intuitively n p(0) n p(0) => p(1) n p(0) /\ p(1) => p(2) (don’t have p(1) => p(2)) n p(0) /\ p(1) /\ p(2) => p(3), (don’t have p(2) => p(3)) n …. n So, p(n) is True for all n>=0 Page 14
15
COMP 170 L2 Page 15
16
COMP 170 L2 Strong Induction Implicitly Used in Proof of Euclid’s Division Theorem
17
COMP 170 L2 Remarks Page 17
18
COMP 170 L2 Summary Page 18
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.