Download presentation
Presentation is loading. Please wait.
1
Minimum Spanning Trees
2
a b d f g e c
3
a b d f g e c
4
a b d f g e c
5
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
6
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 Minimum spanning tree weight = 0
7
Systematic Approach: -Grow a spanning tree A -Always add a safe edge to A that we know belongs to some minimal spanning tree
8
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R
9
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R There must go exactly one edge from b to the minimum spanning tree. Which edge should we choose? Are all three a possibility (maybe suboptimal)? Could the 7 edge be optimal to choose? What about the two 5 edges?
10
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R There must go exactly one edge from b to the spanning tree. Which edge should we choose? Are all three a possibility? Yes, every vertex will connect to the tree Could the 7 edge be optimal to choose? No, we must connect with a light edge What about the two 5 edges? The red is possible, but they both are !!
11
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’
12
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’
13
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’
14
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’
15
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’
16
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’
17
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’
18
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’
19
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’’
20
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’’
21
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’’’
22
Kruskal’s Algorithm
23
Idea: Rethink the previous algorithm from vertices to edges -Initially each vertex forms a singleton tree -In each iteration add the lightest edge connecting two trees in the forest.
24
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
25
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
26
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
27
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
28
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
29
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
30
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
31
a b d f g e c 0 2 -3 5 5 7 0 5 8 0
32
a b d f g e c 0 2 -3 5 5 7 0 5 8 0 R’’’
33
MSTkruskal(G,w) 1 A Ø 2 for each vertex v V[G] 3 do MakeSet(v) 4 sort the edges of E into nondecreasing order by weight w 5 for each edge (u,v) E, taken in nondecreasing order by weight 6 do if FindSet(u) FindSet(v) 7 then A A {(u,v)} 8 Union(u,v) 9 return A
34
MSTkruskal(G,w) 1 A Ø 2 for each vertex v V[G] 3 do MakeSet(v) 4 sort the edges of E into nondecreasing order by weight w 5 for each edge (u,v) E, taken in nondecreasing order by weight 6 do if FindSet(u) FindSet(v) 7 then A A {(u,v)} 8 Union(u,v) 9 return A Time?
35
MSTkruskal(G,w) 1 A Ø 2 for each vertex v V[G] 3 do MakeSet(v) 4 sort the edges of E into nondecreasing order by weight w 5 for each edge (u,v) E, taken in nondecreasing order by weight 6 do if FindSet(u) FindSet(v) 7 then A A {(u,v)} 8 Union(u,v) 9 return A Time? O(E*lgE)
36
MSTkruskal(G,w) 1 A Ø 2 for each vertex v V[G] 3 do MakeSet(v) 4 sort the edges of E into nondecreasing order by weight w 5 for each edge (u,v) E, taken in nondecreasing order by weight 6 do if FindSet(u) FindSet(v) 7 then A A {(u,v)} 8 Union(u,v) 9 return A Time? O(E*lgE) Theorem 21.13: m FindSet, Union, and MakeSet operations of which n are MakeSet operations takes O(m*α(n))
37
MSTkruskal(G,w) 1 A Ø 2 for each vertex v V[G] 3 do MakeSet(v) 4 sort the edges of E into nondecreasing order by weight w 5 for each edge (u,v) E, taken in nondecreasing order by weight 6 do if FindSet(u) FindSet(v) 7 then A A {(u,v)} 8 Union(u,v) 9 return A Time? O(E*lg(E)) O(V+E*α(V)) = O(V+E*lg(V)) = O(V+E*lg(E)) = O(E*lg(E))
38
MSTkruskal(G,w) 1 A Ø 2 for each vertex v V[G] 3 do MakeSet(v) 4 sort the edges of E into nondecreasing order by weight w 5 for each edge (u,v) E, taken in nondecreasing order by weight 6 do if FindSet(u) FindSet(v) 7 then A A {(u,v)} 8 Union(u,v) 9 return A O(E*lg(E)) O(V+E*α(V)) = O(V+E*lg(V)) = O(V+E*lg(E)) = O(E*lg(E))
39
a b d f g e c 0 2 -3 5 5 7 1 5 8 0 R Obviously tree. Which edge should we choose?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.