Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ron Akre, Dayle Kotturi LCLS February 8, 2006 Linac Coherent.

Similar presentations


Presentation on theme: "Ron Akre, Dayle Kotturi LCLS February 8, 2006 Linac Coherent."— Presentation transcript:

1 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 February 8, 2006

2 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Safety First and Second and Third…..to Infinity Hazards in the LLRF system RF 1kW at 120Hz at 5uS = 0.6 Watts average, 2 Watt average amps at 2856MHz, 60W average amps at 476MHz Hazards – RF Burns Mitigation – Avoid contact with center conductor of energized connectors. All employees working with LLRF systems are required to have the proper training. 110VAC Connector Hazards - Shock Mitigation - Don’t touch conductors when plugging into outlet. All chassis are inspected by UL trained inspector.

3 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Scope of Work – Injector Turn-on Linac Sector 0 RF Upgrade WBS 1.02.04.03.01 All 3 RF Chassis completed and Installed Control Module to be installed Feb 06 Sector 20 RF distribution system WBS 1.02.04.03.02 Phase and Amplitude Controllers – 9 units Phase and Amplitude Monitors – 2 dual channel units Phased Locked Oscillator LO Generator Multiplier – 476MHz to 2856MHz – 2 units Amplifiers – 4 units Laser Phase Measurement LLRF Control and Monitor System WBS 1.02.04.03.03 1 kW Solid State S-Band Amplifiers – 5 units Phase and Amplitude Monitors – 16 dual chan units Phase and Amplitude Controllers – 6 single chan units Bunch Length Monitor Interface Beam Phase Cavity WBS 1.02.04.03.04 Will use single channel of RF Monitor Chassis Pill box cavity with 2 probes and 4 tuners 52 Chassis Total 9 Chassis Completed

4 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 LCLS Layout P. Emma

5 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 LLRF Control system spans Sector 20 off axis injector to beyond Sector 30

6 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 LCLS RF Jitter Tolerance Budget RMS tolerance budget for <12% rms peak-current jitter or <0.1% rms final e− energy jitter. All tolerances are rms levels and the voltage and phase tolerances per klystron for L2 and L3 are  Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac. P. Emma Lowest Noise Floor Requirement 0.5deg X-Band = 125fS Structure Fill time = 100nS Noise floor = -111dBc/Hz @ 11GHz 10MHz BW -134dBc/Hz @ 476MHz X-band X-X-X-X- 0.50

7 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Slow Drift Tolerance Limits Gun-Laser Timing  2.4* deg-S Bunch Charge  3.2 % Gun RF Phase  2.3 deg-S Gun Relative Voltage  0.6 % L0,1,X,2,3 RF Phase (approx.) 5555deg-S L0,1,X,2,3 RF Voltage (approx.) 5555% (Top 4 rows for  /  < 5%, bottom 4 limited by feedback dynamic range) * for synchronization, this tolerance might be set to  1 ps (without arrival-time measurement) (Tolerances are peak values, not rms) P. Emma, J, Wu

8 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Linac Sector 0 RF Upgrade PEP PHASE SHIFT ON MAIN DRIVE LINEMDL RF with TIMING Pulse – Sync to DR Master Oscillator is located 1.3 miles from LCLS Injector 1.3 Miles to LCLS Injector LCLS must be compatible with the existing linac operation including PEP timing shifts Measurements on January 20, 2006 show 30fS rms jitter in a bandwidth from 10Hz to 10MHz

9 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Linac Sector 0 RF Upgrade Status New Low Noise Master Oscillator – Done New Low Noise PEP Phase Shifter RF Chassis – Done Control Chassis – Feb 06 New Low Noise Master Amplifier – Done Main Drive Line Coupler in Sector 21 – Done Measurements Noise floor on 476MHz of -156dBc/Hz Integrated jitter from 10Hz to 10MHz of 30fS

10 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Sector 20 RF Distribution Phase Critical Cables Laser <140ft < 700fSpp Gun < 100ft < 400fSpp

11 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Sector 20 RF Distribution System Status Phase Locked Oscillator – 476MHz Preliminary Design – same as SPPS Low Noise 119MHz VCO and Multipliers in house Analog Track/Hold / feedback amp complete unit tested at SPPS May consider digital feedback amp if time permits LO Generator – 2830.5MHz Preliminary Design complete – 80% of Parts are in house PC Board in design Multipliers - 476MHz to 2856MHz – Done Phase and Amplitude Control Unit In Design – Testing IQ modulators and amplifiers – See Next Section Phase and Amplitude Monitor Unit In Design – Testing Mixers, Amplifiers, Filters – See Next Section Amplifiers – not ordered yet Laser Phase Measurement System – Design Started

12 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 LLRF Control System Distributed Control System Microcontroller based IOC Control and Monitor Modules Central Feedback Computer See LLRF Control talk Control breakout session – Attached By Dayle Kotturi

13 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 LLRF Control and Monitor System Status 1 kW Solid State S-Band Amplifiers – 5 units 1kW amplifier modules currently in test Existing amplifier support design under review Phase and Amplitude Monitors – 16 dual chan units Preliminary Design Complete Evaluating amplifiers, mixers, and filters Phase and Amplitude Controllers – 6 single chan units Preliminary design complete Evaluating mixers and amplifiers Bunch Length Monitor Interface Need Specifications

14 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Beam Phase Cavity Status Electronics will use single channel of RF Monitor Chassis Pill box cavity with 2 probes and 4 tuners Cavity Electronics will use single channel of RF Monitor Cavity in design - probe and tuner design complete Fab, Test, Tune – May 2006 Bake – June 2006 Measurement of beam phase to RF reference phase. The result will be used to correct timing of laser to RF reference. Cavity is located between L0A and L0B.

15 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Status Summary Linac New Low Noise Source – RF components installed, Controls Feb06 RF Distribution – Prototyping underway (R. Akre, B.Hong, H. Schwarz) Monitor Controller Board (J. Gold, R. Akre, Till Straumann) Single channel prototype for ADS5500 tested to specifications Four channel ADS5500 board – layout complete (SNR 70dBFS) Switched to LTC2208 16bit 130MSPS ADC (Prototype in test) (SNR 77dBFS) RF Monitor Board in preliminary design (H. Schwarz, B.Hong) Testing mixers Control Boards (J. Olsen) Fast Control Board – in test Slow control board – May use fast board RF Control Board in preliminary design (H. Schwarz, B. Hong) Software (D. Kotturi, Till Straumann) EPICS on RTEMS on Microcontroller done Drivers Algorithms System Completion - December 2006 for Injector

16 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 End of LLRF RF Talk Backup for RF Talk

17 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 MPS – PPS Issues Addressed by Controls Group Not Reviewed Here Vacuum New vacuum system summary to be fed to each klystron existing MKSU. PPS System Injector modulators will be interlocked by Injector PPS system. PPS requirements for radiation from the injector transverse accelerator needs to be determined. Radiation levels will be measured during testing in the Klystron Test Lab – Feb 06.

18 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Bandwidth of S-Band System Upper Frequency Limit – 10MHz Beam-RF interaction BW due to structure fill time < 1.5MHz S-Band Accelerators and Gun ~10MHz X-Band and S-Band T Cav Structure RF Bandwidth ~ 16MHz 5045 Klystron ~ 10MHz Lower Frequency Limit – 10kHz Fill time of SLED Cavity = 3.5uS about 100kHz Laser – Needs to be measured ~ 10kHz

19 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Noise Levels RF Reference Single Side Band (SSB) Noise Floor 2856MHz RF Distribution -144dBc/Hz -174dBc/Hz @ 119MHz (24x = +28dB +2 for multiplier) 2830.5MHz Local Oscillator -138dBc/Hz Integrated Noise -138dBc/Hz at 10MHz = -65dBc = 32fS rms SNR = 65dB for phase noise Added noise from MIXER (LO noise same as RF) SNR of 62dB ADC noise levels SNR of 70dB – 14bit ADS5500 at 102MSPS

20 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Phase Noise – Linac Sector 0 OLD MASTER OSCILLATOR -133dBc/Hz at 476MHz 340fSrms jitter in 10MHz BW NEW MASTER OSCILLATOR -153dBc/Hz at 476 MHz 34fSrms jitter in 10MHz BW Integrated Noise - Timing Jitter fs rms Integral end 5MHz10kHz Integral start 1M100k10k1k10010 Aug 17, 2004 Sector 30 273033387582 Jan 20, 2006 Sector 2115192020817

21 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Sector 20 RF Distribution Cable Errors Temperature Coefficient of 2.8ppm/ºF and Cable length is 1200ºS/ft All Cables except LASER are less than 100ft Distances feet and errors in degrees S total range RF Hut Down Linac Wall Injector Total Unit Ft degS ft degS ft degS ft degS ft degS DegS Laser 8 0.054 25 0.017 10 0.014 10 0.007 85 0.58 0.68 Gun 8 0.054 25 0.017 10 0.014 10 0.007 40 0.27 0.37 L0-A 8 0.054 25 0.017 10 0.014 10 0.007 30 0.21 0.31 B Phas 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14 0.24 L0-B 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14 0.24 L0-T 8 0.054 25 0.017 10 0.014 10 0.007 10 0.07 0.17 L1-S 8 0.054 25 0.017 50 0.068 0.14 L1-X 8 0.054 25 0.017 60 0.081 0.16 Temperature Variations: RF Hut ±1ºF : Penetration ±0.1ºF : Linac : ±0.2ºF Shield Wall ±0.1ºF : Injector ±1ºF

22 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 RF Control and Monitor Signal Counts Distribution (5~2850MHz, 4<500MHz) 9 IQ Mod 4 RF monitors RF Gun1 Klystron 7 RF monitors Beam Phase Cavity1 IQ mod 2 RF monitor L0-AAccelerator1 Klystron 4 RF monitors L0-B Accelerator1 Klystron 4 RF monitors L0-T Transverse Accelerator1 Klystron 4 RF monitors L1-S Station 21-1 B, C, and D accelerators 1 Klystron 6 RF monitors L1-X X-Band accelerator X-Band2 IQ Mod 5 RF monitors S25-Tcav1 Klystron 4 RF monitors S24-1, 2, & 3 Feedback3 Klystrons S29 and S30 Feedback2 IQ modulators 476MHz Total modulators and monitors23 modulators 40 monitors Totals at ~2856MHz15 modulators 33 monitors

23 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 LLRF Control and Monitor System 1 kW Solid State S-Band Amplifiers – 5 units Phase and Amplitude Monitors – 16 dual chan units Phase and Amplitude Controllers – 6 single chan units Bunch Length Monitor Interface – Need Specifications

24 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 RF Control RF Control Module consist of the following: Input Coupler, IQ Modulator, Amplifier, Output Coupler Filters for I and Q inputs Required 11 Units Includes Distribution

25 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 RF Monitor Required 16 Chassis for Injector – Includes Distribution LO 2830.5MHz : RF 2856MHz IF 25.5MHz (8.5MHz x 3 in sync with timing fiducial) Double-Balanced Mixer Mixer IF to Amp and then Low Pass Filter Filter output to ADC sampling at 102MSPS 2830.5MHz Local Osc. 2856MHz RF Signal To ADC LTC2208 SNR = 77dBFS 102MSPS

26 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 1 kW Solid State S-Band Amplifiers Electrical Design Complete – Under Review Mechanical design in progress Modules in house – in test Support parts – Some parts in house Power Supplies, relays, chassis need to be ordered

27 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 SLAC Linac RF – New Control The new control system will tie in to the IPA Chassis with 1kW of drive power available. Reference will be from the existing phase reference line or the injector new RF reference I and Q will be controlled with a 16bit DAC running at 119MHz. Waveforms to the DAC will be set in an FPGA through a microcontroller running EPICS on RTEMS. Existing System

28 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Controls Talk

29 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 LLRF Controls Outline Requirements External Interfaces Schedule Date Needed Prototype Completion Date Hardware Order Date Installation Test Period Design Design Maturity (what reviews have been had) State of Wiring Information State of Prototype

30 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Requirements At 120 Hz, meet phase/amp noise levels defined as: 0.1% rms amplitude 100 fs rms in S-band (fill time = 850 ns) 125 fs rms in X-band (fill time = 100 ns) All tolerances are rms levels and the voltage and phase tolerances per klystron for L2 and L3 are  Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac (L2 has 28; L3 has 48)

31 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback (except for T- cavs); when beam is absent, control will be done by local phase and amplitude controller (PAC) Adhere to LCLS Controls Group standards: RTEMS, EPICS, Channel Access protocol Ref: Why RTEMS? Study of open source real-time OSStudy of open source real-time OS Begin RF processing of high-powered structures May 20, 2006

32 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving, etc over controls network LLRF VME to beam-based longitudinal feedback from feedback: phase and amplitude corrections at 120 Hz over private ethernet from LLRF: phase and amplitude values (internal) LLRF VME to LLRF microcontrollers from VME: triggers, corrected phase and amplitude from microcontrollers: phase and amplitude averaged values at 120 Hz, raw phase and amplitude values for debug

33 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 External Interfaces: Laser - Tcav

34 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 External Interfaces: L2-L3

35 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Schedule – for PAD Date Needed: injector: Dec/06 Prototype Completion Date: Mar/06: board prototype (2 or 4 chan, thermo) May/06: final board. Test (incl temp. cycling) Hardware Order Date: continuous Hardware Delivery Date: by Sep/06: chassis (15 dual channel) avail. Installation: injector: Oct/06 Test Period: injector: Nov/06

36 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Schedule – for PAC Date Needed: injector: Dec/06 Prototype Completion Date: Jan/06: first board prototype Mar/06: first board prototype if not same as fast PAC Hardware Order Date: continuous Hardware Delivery Date: by Sep/06: chassis (6 single channel) Installation: injector: Nov/06 Test Period: injector: Nov/06

37 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Schedule – for slow PAC Date Needed: injector: Dec/06 Prototype Completion Date: Mar/06: first board prototype if different than fast PAC Hardware Order Date: continuous Hardware Delivery Date: by Sep/06: chassis (6 single channel) Installation: injector: Nov/06 Test Period: injector: Nov/06

38 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Schedule – for timing/feedback crate Date Needed: injector: Dec/06 Prototype Completion Date: Fall/06 Hardware Order Date: done Hardware Delivery Date: have it Installation: injector: Nov/06 Test Period: injector: Nov/06

39 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Design Design maturity (what reviews have been had): RF/Timing DesignRF/Timing Design, DOE Review, August 11, 2004 Akre_FAC_Oct04_RF_TimingAkre_FAC_Oct04_RF_Timing, FAC Review, October, 2004 Low Level RF Controls DesignLow Level RF Controls Design, LCLS Week, January 25-27, 2005 Low Level RFLow Level RF, Lehman Review, May 10-12, 2005 LLRF Plans for Development and Testing of ControlsLLRF Plans for Development and Testing of Controls, LCLS Week, July 21, 2005 Low Level RF DesignLow Level RF Design, Presentation for Controls Group, Sept. 13, 2005 LLRF Preliminary Design reviewLLRF Preliminary Design review, SLAC, September 26, 2005 LCLS LLRF Control System - KotturiLCLS LLRF Control System - Kotturi, LLRF Workshop, CERN, October 10-13, 2005 LCLS LLRF System - HongLCLS LLRF System - Hong, LLRF Workshop, CERN, October 10-13, 2005 LLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/AkreLLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/Akre, LCLS Week, SLAC, October 24-26, 2005 LCLS Week LLRF and feedback - Kotturi/AllisonLCLS Week LLRF and feedback - Kotturi/Allison, LCLS Week, SLAC, October 24-26, 2005 LLRFLLRF, LCLS System Concept Review/Preliminary Design Review, SLAC, November 16-17, 2005 CommentsComments LLRF Beam Phase Cavity Preliminary Design reviewLLRF Beam Phase Cavity Preliminary Design review, SLAC, November 30, 2005 Docs at: http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/llrf State of wiring: percent complete Captar input will be given at time of presentation State of prototype: PAD (1 chan ADC) and PAC boards built (shown on next pages).Testing.

40 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 PAD – the monitor board

41 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 PAD – the monitor board

42 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 PAC – the control board

43 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 PAC – the control board

44 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Additional Slides The following two pages show an overview of the LLRF control modules. From these diagrams, counts of module types, as well as function and location are seen.

45 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Overview of LLRF at Sector 20

46 Ron Akre, Dayle Kotturi LCLS LLRFakre@slac.stanford.eduakre@slac.stanford.edu, dayle@slac.stanford.edudayle@slac.stanford.edu February 8, 2006 Overview of LLRF at Sector 24


Download ppt "Ron Akre, Dayle Kotturi LCLS February 8, 2006 Linac Coherent."

Similar presentations


Ads by Google