Presentation is loading. Please wait.

Presentation is loading. Please wait.

Prof. dr. Lambert Schomaker Shattering two binary dimensions over a number of classes Kunstmatige Intelligentie / RuG.

Similar presentations


Presentation on theme: "Prof. dr. Lambert Schomaker Shattering two binary dimensions over a number of classes Kunstmatige Intelligentie / RuG."— Presentation transcript:

1 prof. dr. Lambert Schomaker Shattering two binary dimensions over a number of classes Kunstmatige Intelligentie / RuG

2 2 Samples and classes  In order to understand the principle of shattering sample points into classes we will look at the simple case of  two dimensions  of binary value

3 3 2-D feature space 0 0 1 1 f1f1 f2f2

4 4 2-D feature space, 2 classes 0 0 1 1 f1f1 f2f2

5 5 the other class… 0 0 1 1 f1f1 f2f2

6 6 2 left vs 2 right 0 0 1 1 f1f1 f2f2

7 7 top vs bottom 0 0 1 1 f1f1 f2f2

8 8 right vs left 0 0 1 1 f1f1 f2f2

9 9 bottom vs top 0 0 1 1 f1f1 f2f2

10 10 lower-right outlier 0 0 1 1 f1f1 f2f2

11 11 lower-left outlier 0 0 1 1 f1f1 f2f2

12 12 upper-left outlier 0 0 1 1 f1f1 f2f2

13 13 upper-right outlier 0 0 1 1 f1f1 f2f2

14 14 etc. 0 0 1 1 f1f1 f2f2

15 15 2-D feature space 0 0 1 1 f1f1 f2f2

16 16 2-D feature space 0 0 1 1 f1f1 f2f2

17 17 2-D feature space 0 0 1 1 f1f1 f2f2

18 18 XOR configuration A 0 0 1 1 f1f1 f2f2

19 19 XOR configuration B 0 0 1 1 f1f1 f2f2

20 20 2-D feature space, two classes: 16 hypotheses f 1 =0 f 1 =1 f 2 =0 f 2 =1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 “hypothesis” = possible class partioning of all data samples

21 21 2-D feature space, two classes, 16 hypotheses f 1 =0 f 1 =1 f 2 =0 f 2 =1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 two XOR class configurations: 2/16 of hypotheses requires a non-linear separatrix

22 22 XOR, a possible non-linear separation 0 0 1 1 f1f1 f2f2

23 23 XOR, a possible non-linear separation 0 0 1 1 f1f1 f2f2

24 24 2-D feature space, three classes, # hypotheses? f 1 =0 f 1 =1 f 2 =0 f 2 =1 0 1 2 3 4 5 6 7 8 ……………………

25 25 2-D feature space, three classes, # hypotheses? f 1 =0 f 1 =1 f 2 =0 f 2 =1 0 1 2 3 4 5 6 7 8 …………………… 3 4 = 81 possible hypotheses

26 26 Maximum, discrete space  Four classes: 4 4 = 256 hypotheses  Assume that there are no more classes than discrete cells  Nhypmax = ncells nclasses

27 27 2-D feature space, three classes… 0 0 1 1 f1f1 f2f2 In this example,   is linearly separatable  from the rest, as is .  But  is not linearly separatable from the rest of the classes.

28 28 2-D feature space, four classes… 0 0 1 1 f1f1 f2f2 Minsky & Papert: simple table lookup or logic will do nicely.

29 29 2-D feature space, four classes… 0 0 1 1 f1f1 f2f2 Spheres or radial-basis functions may offer a compact class encapsulation in case of limited noise and limited overlap (but in the end the data will tell: experimentation required!)


Download ppt "Prof. dr. Lambert Schomaker Shattering two binary dimensions over a number of classes Kunstmatige Intelligentie / RuG."

Similar presentations


Ads by Google