Download presentation
Presentation is loading. Please wait.
1
prof. dr. Lambert Schomaker Shattering two binary dimensions over a number of classes Kunstmatige Intelligentie / RuG
2
2 Samples and classes In order to understand the principle of shattering sample points into classes we will look at the simple case of two dimensions of binary value
3
3 2-D feature space 0 0 1 1 f1f1 f2f2
4
4 2-D feature space, 2 classes 0 0 1 1 f1f1 f2f2
5
5 the other class… 0 0 1 1 f1f1 f2f2
6
6 2 left vs 2 right 0 0 1 1 f1f1 f2f2
7
7 top vs bottom 0 0 1 1 f1f1 f2f2
8
8 right vs left 0 0 1 1 f1f1 f2f2
9
9 bottom vs top 0 0 1 1 f1f1 f2f2
10
10 lower-right outlier 0 0 1 1 f1f1 f2f2
11
11 lower-left outlier 0 0 1 1 f1f1 f2f2
12
12 upper-left outlier 0 0 1 1 f1f1 f2f2
13
13 upper-right outlier 0 0 1 1 f1f1 f2f2
14
14 etc. 0 0 1 1 f1f1 f2f2
15
15 2-D feature space 0 0 1 1 f1f1 f2f2
16
16 2-D feature space 0 0 1 1 f1f1 f2f2
17
17 2-D feature space 0 0 1 1 f1f1 f2f2
18
18 XOR configuration A 0 0 1 1 f1f1 f2f2
19
19 XOR configuration B 0 0 1 1 f1f1 f2f2
20
20 2-D feature space, two classes: 16 hypotheses f 1 =0 f 1 =1 f 2 =0 f 2 =1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 “hypothesis” = possible class partioning of all data samples
21
21 2-D feature space, two classes, 16 hypotheses f 1 =0 f 1 =1 f 2 =0 f 2 =1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 two XOR class configurations: 2/16 of hypotheses requires a non-linear separatrix
22
22 XOR, a possible non-linear separation 0 0 1 1 f1f1 f2f2
23
23 XOR, a possible non-linear separation 0 0 1 1 f1f1 f2f2
24
24 2-D feature space, three classes, # hypotheses? f 1 =0 f 1 =1 f 2 =0 f 2 =1 0 1 2 3 4 5 6 7 8 ……………………
25
25 2-D feature space, three classes, # hypotheses? f 1 =0 f 1 =1 f 2 =0 f 2 =1 0 1 2 3 4 5 6 7 8 …………………… 3 4 = 81 possible hypotheses
26
26 Maximum, discrete space Four classes: 4 4 = 256 hypotheses Assume that there are no more classes than discrete cells Nhypmax = ncells nclasses
27
27 2-D feature space, three classes… 0 0 1 1 f1f1 f2f2 In this example, is linearly separatable from the rest, as is . But is not linearly separatable from the rest of the classes.
28
28 2-D feature space, four classes… 0 0 1 1 f1f1 f2f2 Minsky & Papert: simple table lookup or logic will do nicely.
29
29 2-D feature space, four classes… 0 0 1 1 f1f1 f2f2 Spheres or radial-basis functions may offer a compact class encapsulation in case of limited noise and limited overlap (but in the end the data will tell: experimentation required!)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.