Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sensing, Tracking, and Reasoning with Relations Leonidas Guibas, Feng Xie, and Feng Zhao Xerox PARC and Stanford University.

Similar presentations


Presentation on theme: "Sensing, Tracking, and Reasoning with Relations Leonidas Guibas, Feng Xie, and Feng Zhao Xerox PARC and Stanford University."— Presentation transcript:

1 Sensing, Tracking, and Reasoning with Relations Leonidas Guibas, Feng Xie, and Feng Zhao Xerox PARC and Stanford University

2 Sensing for Reasoning and Acting Lead to high-level understanding of a situation Support efficient decision- making Allow for efficient updates as the world-state changes A system of collaborating sensors should provide data that can: Clustering of enemy forces Optimal route selection

3 From Pixels to Predicates Data size: sensor data is usually voluminous, yet it must be transmitted and aggregated over a wide area Robustness: Noise and uncertainty in the data must be handled Sensor control: Sensors must be appropriately tasked to collect and communicate the information relevant to the problem at hand Efficient updates: As objects move and the word-state changes, the high-level reasoning performed by the net must be incrementally updated To be able to provide such high-level functions, a sensor net must address a number of key technical challenges:

4 Focus on Relations between Objects Data size: relational or aggregated information can be compactly encoded and efficiently transmitted Robustness: aggregated information can be statistically more robust than individual data Sensor control: Reasoning is naturally relation- based; well-established theories exist on how to go from observations to conclusions a c High-level reasoning is often based on relations between objects, or other aggregate information. Focusing on relations has many advantages:

5 More Relational Advantages Often relations can be sensed directly by the sensors, without first estimating object positions or poses Aggregated information, if carefully selected, can be stored and re-used Relations between objects are more robust and stable than object positions and poses When certain relations become unsupportable, alternate relations may do just as well a b c Efficient updates

6 Example: “Am_I_Surrounded?” We have a relatively flat terrain with friendly (white) and enemy (black) vehicles, stationary or moving. The field contains PIR and acoustic amplitude sensors. We want to know when a friendly vehicle is surrounded by enemy vehicles. Say “surrounded”  inside the convex hull

7 “Am_I_Surrounded” via CCW Relations The notion of being surrounded can always be captured by a a number of CCW predicates on the vehicle positions. CCW(a,b,c) asserts that the triangle defined by a, b, and c is counterclockwise oriented. CCW predicates can capture the notion of the convex hull of a set of points, and the notion of inclusion in a convex polygon or triangle.

8 Direct Sensing of CCW Relations s1, s2, and s3 are PIR sensors They directly sense the relations CCW(f,e1,e2), CCW(f,e2,e3), and CCW(f,e3,e1). From these relations, the containment of f in the triangle defined by e1, e2, and e3 follows.

9 Target Localization for CCW Relations In general, direct sensing is not possible. However, by sufficiently localizing the targets, CCW relations (or their negations) can be estimated with high confidence. CCW relations can be estimated using the current belief state of the system about the location of each target. Improved estimation requires a non-trivial sensor selection strategy. For CCW(t1,t2,t3), s2 is more valuable than s1.

10 An Example: CCW Using Distance Sensors We are given three targets t1, t2, and t3. Two acoustic amplitude measurements per target were used to obtain the distributions shown. Our goal is to have (say) 90% confidence that CCW(t1,t2,t3) is true. This is not yet the case in the current belief state – additional sensing is necessary to improve localization. We assume the sensor field is known. Darker color indicates higher likelihood. The x indicates actual target location, the x expected location. The + indicates location of the last sensor used. t1 t2 t3

11 Computing the CCW confidence Target location belief states are represented as 2-d arrays. A quad-tree-like multi-resolution structure is superimposed, to speed up computation. Undetermined tile triplets are refined until the mass in the “CCW’ or “not CCW” bins exceeds the desired threshold, or until a triplet budget is exceeded. Triplets of quad-tree tiles, one from each target, are classified as CCW, not CCW, or undetermined.

12 Sensor Selection Strategies Use Mahalanobis distance and cycle among the targets. Use a geometric heuristic – this selects a sensor close to the perpendicular from one target to the line through the other two. Use expected reduction in uncertainty, based on the current belief states and the known sensor locations. To have ground truth, simulate the effect of using each sensor, and choose the one that actually reduces uncertainty the most.

13 Using the Target Cycling Heuristic Uncertain mass CCW mass 23 45

14 Using the Geometry Heuristic 2 3 45 Reduction in uncertainty is less.

15 Tracking the “Am_I_Surrounded” Relation As vehicles move, we maintain three CCW relations establishing that the friendly vehicle is indeed in a triangle formed by three enemy vehicles. When the friendly vehicle escapes the triangle, the sensor net searches for a new enemy vehicle that can still establish containment. The triplet basis is maintained under motion.

16 Conclusion Sensing and tracking with relations provides a new approach to sensor exploitation. The approach allows the sensor net to focus its resources towards the task at hand and take advantage of discrete reasoning. It also raises many new and interesting problems on task decomposition, sensor selection, recovery from failure, etc.


Download ppt "Sensing, Tracking, and Reasoning with Relations Leonidas Guibas, Feng Xie, and Feng Zhao Xerox PARC and Stanford University."

Similar presentations


Ads by Google