Presentation is loading. Please wait.

Presentation is loading. Please wait.

Title “New forms of quantum matter near absolute zero temperature” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold.

Similar presentations


Presentation on theme: "Title “New forms of quantum matter near absolute zero temperature” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold."— Presentation transcript:

1 Title “New forms of quantum matter near absolute zero temperature” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 5/23/06 NASA workshop Airlie Center

2 Title The ongoing revolution in atomic physics …

3 Title Enabling technology: Nanokelvin temperatures

4 The concepts The cooling methods Laser cooling Evaporative cooling

5 Sodium BEC I experiment (2001)

6 Guinness Book Record

7 Height of atmosphere How to measure temperature Height of the atmosphere 300 K h=10 km 300  K h=1 cm e -(10 6 ) Potential (gravitational) energy mgh = k B T/2 (g: gravitational acceleration) In thermal equilibrium: Potential energy ~ kinetic energy 1 nK h= 30 nm

8 1.05 nK 780 pK 450 pK Trapping a sodium BEC with a single coil Lowest temperature ever achieved: 450 picokelvin Temperature measurement by imaging the size of the trapped cloud A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, and W. Ketterle, Science 301, 1513 (2003). 1 cm

9 Precision measurements Precision measurements with Bose-Einstein condensates... We have to get rid of perturbing fields … Gravity Magnetic fields

10 What distinguishes nanokelvin? Physics BEC Phase transition Quantum reflection Interactions Ease of Manipulation

11 BEC at JILA and MIT BEC @ JILA, June ‘95 (Rubidium) BEC @ MIT, Sept. ‘95 (Sodium)

12 T.A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D.E. Pritchard, W.K. Quantum Reflection of Ultracold Atoms Phys. Rev. Lett. 93, 223201 (2004) Preprint (2006)

13 Silicon surface Sodium BEC

14 Quantum Reflection from Nanopillars Reflection Probability Velocity (mm/s) Solid Si surface Reduced density Si surface 1 mm/s is 1.5 nK x k B kinetic energy

15 What distinguishes nanokelvin? Physics BEC Phase transition Quantum reflection Interactions Ease of Manipulation

16 Moving condensates Loading sodium BECs into atom chips with optical tweezers BEC production BEC arrival 44 cm T.L.Gustavson, A.P.Chikkatur, A.E.Leanhardt, A.Görlitz, S.Gupta, D.E.Pritchard, W. Ketterle, Phys. Rev. Lett. 88, 020401 (2002). Atom chip with waveguides

17

18 Splitting of condensates 15ms Expansion Two condensates 1mm One trapped condensate

19 Trapped 15ms expansion 1mm Two condensates Splitting of condensates

20 Two condensates Splitting of condensates Y. Shin, C. Sanner, G.-B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss: Phys. Rev. A 72, 021604(R) (2005). Very recent progress: 200 ms coherence time for an atom chip interferometer

21 Two condensates Splitting of condensates The goal: Atom interferometry: Matter wave sensors Use ultracold atoms to sense Rotation  Navigation Gravitation  Geological exploration

22 What distinguishes nanokelvin? Physics BEC Phase transition Quantum reflection Interactions Ease of Manipulation

23 Two of the biggest questions in condensed matter physics: The nature of high-temperature superconductors Quantum magnetism, spin liquids Strongly correlated, strongly interacting systems

24 Title Particle A Particle B Pair A-B How to get strong interactions?

25 Title Particle A Particle B Pair A-B Resonant interactions have infinite strength Unitarity limited interactions: Pairing in ultracold fermions Relevant to quark-gluon plasmas

26 E Feshbach resonance Magnetic field Free atoms Molecule

27 E Feshbach resonance Magnetic field Free atoms Molecule Disclaimer: Drawing is schematic and does not distinguish nuclear and electron spin.

28 E Feshbach resonance Magnetic field Molecule Two atoms …. Free atoms

29 E Feshbach resonance Magnetic field Molecule … form an unstable molecule Free atoms

30 E Feshbach resonance Magnetic field Molecule … form a stable molecule Free atoms

31 E Feshbach resonance Magnetic field Molecule Atoms attract each other Free atoms

32 E Feshbach resonance Magnetic field Molecule Atoms attract each other Atoms repel each other Free atoms

33 Force between atoms Scattering length Feshbach resonance Magnetic field Atoms attract each other Atoms repel each other

34 Title Observation of High- Temperature Superfluidity in Ultracold Fermi Gases

35 Bosons Particles with an even number of protons, neutrons and electrons Fermions Particles with an odd number of protons, neutrons and electrons Bose-Einstein condensation  atoms as waves  superfluidity At absolute zero temperature … Fermi sea:  Atoms are not coherent  No superfluidity

36 Two kinds of fermions Fermi sea:  Atoms are not coherent  No superfluidity Pairs of fermions Particles with an even number of protons, neutrons and electrons

37 At absolute zero temperature … Pairs of fermions Particles with an even number of protons, neutrons and electrons Bose-Einstein condensation  atoms as waves  superfluidity Two kinds of fermions Particles with an odd number of protons, neutrons and electrons Fermi sea:  Atoms are not coherent  No superfluidity

38 Two kinds of fermions Particles with an odd number of protons, neutrons and electrons Fermi sea:  Atoms are not coherent  No superfluidity Weak attractive interactions Cooper pairs larger than interatomic distance momentum correlations  BCS superfluidity

39 Bose Einstein condensate of molecules BCS Superconductor Atom pairs Electron pairs

40 Molecules Atoms Energy Magnetic field Molecules are unstable Atoms form stable molecules Atoms repel each other a>0 Atoms attract each other a<0 BEC of Molecules: Condensation of tightly bound fermion pairs BCS-limit: Condensation of long-range Cooper pairs

41 Bose Einstein condensate of molecules Atom pairs BCS superfluid

42 Molecular BEC BCS superfluid

43 Molecular BEC BCS superfluid Magnetic field

44 Molecular BEC BCS superfluidCrossover superfluid

45 High-temperature superfluidity at 100 nK? Binding energy of pairsTransition temperature  10 -5 … 10 -4 normal superconductors 10 -3 superfluid 3 He 10 -2 high T c superconductors 0.3 high T c superfluid Fermi energy Fermi temperature  (density) 2/3 Scaled to the density of electrons in a solid: Superconductivity far above room temperature!

46 Optical trapping @ 1064 nm axial = 10-20 Hz radial = 50–200 Hz E trap = 0.5 - 5  K States |1> and |2> correspond to |  > and |  > Preparation of an interacting Fermi system in Lithium-6

47 Title How to show that these gases are superfluid?

48 Rotating buckets

49 Quantized circulation Quantization: Integer number of matter waves on a circle

50 Vortex structure

51 Spinning a strongly interacting Fermi gas Makes life hard ….. Container is an optical trap at high bias field! Imperfections of the beam Anisotropy Anharmonicity Stray magnetic field gradients Gravity etc… Have to fight against:

52 Vortices in the BEC-BCS Crossover Vortex lattices in the BEC-BCS crossover M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, 1047-1051 (2005) This establishes phase coherence and superfluidity in gases of molecules and of fermionic atoms Astrophysical significance: Superfluidity of neutron in neutron stars Pulsar glitches

53 Atomic Bose-Einstein condensate (sodium) Molecular Bose-Einstein condensate (lithium 6 Li 2 ) Pairs of fermionic atoms (lithium-6) Gallery of superfluid gases

54 Fermionic Superfluidity with Imbalanced Spin Populations Astrophysical significance: Superfluidity of quarks in neutron stars

55 BCS Pairing of Fermions Energy 22 11

56 Pairing costs kinetic energy, but there is gain in potential energy (attractive interaction between fermions) BCS Pairing of Fermions Energy 22 11 Pairing energy 

57 Unequal Fermi energies (non-interacting) (example: Apply magnetic field to a normal conductor) BCS Pairing of Fermions Energy 22 11

58 BCS Pairing of Fermions 22 11 Interacting case, fixed particle number: Phase separation! (Bedaque, Caldas, Rupak 2003) Breakdown of the BCS state when   1 –  2 Superfluid gap is now smaller NNS Clogston 1962

59 FFLO/ LOFF-State Breached Pair State Distorted Fermi Surface Phase Separation Recent theory (>=2005): Carlson, Reddy, Cohen, Sedriakan, Mur-Petit, Polls, Müther, Castorina, Grasso, Oertel, Urban, Zappalà, Pao, Wu, Yip, Sheehy, Radzihovsky, Son, Stephanov, Yang, Sachdev, Pieri, Strinati, Yi, Duan, He, Jin, Zhuang, Caldas, Chevy

60 94%90%56%30%22%12%6% Fermionic Superfluidity with Imbalanced Spin Populations Population Imbalance:  = (N 2 -N 1 )/(N 2 +N 1 ) |2> 0% |1> BEC-Side1/k F a = 0.2 -100%-74%0%-2%-32%-16%-58%-48% |2> |1> BCS-Side1/k F a = -0.15

61 Increase population imbalance Momentum distribution after magnetic field sweep to the BEC side |1> |2>

62 Superfluidity is robust in the strongly interacting regime! M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006), published online on Science Express 21 December 2005 The Window of Superfluidity Decreasing Interaction 1/k F a 0.11 0 – 0.27 – 0.44 BEC BCS Condensate Fraction Population Imbalance

63 Phase Diagram for Unequal Mixtures Breakdown: Critical mismatch in Fermi energies  E F  Gap   E Kin = 310 nK 350 nK 400 nK 430 nK Superfluid Normal BCSBEC Critical Population Imbalance

64 Energy What is the nature of the superfluid state? 22 11 NNS

65 Phase Contrast Imaging |1> |2> |3> n2n2 n1n1 80 MHz Imaging beam red-detuned for |1>, blue-detuned for |2> Optical signal of phase-contrast imaging directly measures density difference  n=n 2 -n 1 Li linewidth:  = 6 MHz |1>|2> Equal mixture In-trap images

66 The shell structure is a hint of the phase separation. Direct imaging of the density difference -50%-37%20%0%-24%-30%30%40%50% Population imbalance

67 Reconstruction of 3D density profile Only assumption: cylindrical symmetry Phase Separation !!  =0.6

68 Atomic physics “knobs” to control many-body physics Density 10 11 to 10 15 cm -3 Temperature 500 pK to 1 mK Interactions: scattering length a -  to +  Choice of hyperfine state(s): | , |  ; spinors Optical traps and lattices: 1D, 2D systems Optical lattices with different symmetries Spin dependent lattices Rotation Disorder BB a Use the tools and precision of atomic physics to realize new phenomena (Hamiltonians) of many-body physics Condensed-matter physics at ultra-low densities (100,000 times thinner than air)

69 BEC I Ultracold fermions Martin Zwierlein Christian Schunck Andre Schirotzek Peter Zarth Ye-ryoung Lee Yong-Il Shin BEC II Na 2 molecules Na-Li mixture Optical Lattices Kaiwen Xu Jit Kee Chin Daniel Miller Yingmei Liu Widagdo Setiawan Christian Sanner BEC III Atom chips, surface atom optics Tom Pasquini Gyu-Boong Jo Michele Saba Caleb Christensen Sebastian Will D.E. Pritchard BEC IV Atom optics and optical lattices Micah Boyd Erik Streed Gretchen Campbell Jongchul Mun Patrick Medley D.E. Pritchard $$ NSF ONR NASA DARPA Opening for postdoc


Download ppt "Title “New forms of quantum matter near absolute zero temperature” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold."

Similar presentations


Ads by Google