Download presentation
Presentation is loading. Please wait.
1
Regularization by Galerkin Methods Hans Groot
2
2 Overview In previous talks about inverse problems: well-posedness worst-case errors regularization strategies
3
3 Overview In this talk: Introduction Projection methods Galerkin methods Symm’s integral equation Conclusions
4
4 Differentiation: Inverse problem → integration: Example: differentiation Introduction Symm’s Integral EquationProjection MethodsGalerkin MethodsConclusions
5
5 Given perturbation y of y : Integration ill-posed: Example: differentiation Introduction Symm’s Integral EquationProjection MethodsGalerkin MethodsConclusions
6
6 Interpolation : Numerical integral does not blow up: Example: differentiation Introduction Symm’s Integral EquationProjection MethodsGalerkin MethodsConclusions
7
7 Inverse Problems Let: X, Y Hilbert spaces K : X → Y linear, bounded, one-to-one mapping Inverse Problem: Given y ∈ Y, solve Kx = y for x ∈ X Symm’s Integral EquationIntroductionGalerkin MethodsConclusions Projection Methods
8
8 Let: X n ⊂ X, Y n ⊂ Y n -dimensional subspaces Q n : Y → Y n projection operator Projection Method: Given y ∈ Y, solve Q n Kx n = Q n y for x n ∈ X n Projection Methods Symm’s Integral EquationIntroductionGalerkin MethodsConclusions Projection Methods
9
9 Let: Then Linear System of Equations Symm’s Integral EquationIntroductionGalerkin MethodsConclusions Projection Methods
10
10 Regularization by Disretization General assumptions: ∪ n X n dense in X Q n K | X n : X n → Y n one-to-one Definition: R n ≔ (Q n K | X n ) -1 Q n : Y → X n Convergence: x n = R n Kx → x (n → ∞) Symm’s Integral EquationIntroductionGalerkin MethodsConclusions Projection Methods
11
11 Under given assumptions: convergence iff R n is regularization strategy: for some c > 0, all n ∈ ℕ error estimate: Theorem Symm’s Integral EquationIntroductionGalerkin MethodsConclusions Projection Methods
12
12 Galerkin Method Galerkin method: for all z n ∈ Y n Substitute for Symm’s Integral EquationIntroductionProjection MethodsConclusions Galerkin Methods
13
13 Error Estimates Approximate right-hand side y ∈ Y, ∥ y - y ∥ ≤ : Equation: Error estimate: Approximate right-hand side ∈ Y, | - | ≤ : Equation: Error estimate: for all z n ∈ Y n System of equations: for Symm’s Integral EquationIntroductionProjection MethodsConclusions Galerkin Methods
14
14 Example: Least Squares Method Least squares method ( Y n = K ( X n ) ) : for all z n ∈ X n Substitute for Symm’s Integral EquationIntroductionProjection MethodsConclusions Galerkin Methods
15
15 Example: Least Squares Method Define : Assume: for some c > 0, all x ∈ X Then least squares method is convergent and ∥ R n ∥ ≤ n Symm’s Integral EquationIntroductionProjection MethodsConclusions Galerkin Methods
16
16 Example: Dual Least Squares Method Dual least squares method ( X n = K * ( Y n )) : - with K * : Y → X adjoint of K - for all z n ∈ Y n Substitute for Symm’s Integral EquationIntroductionProjection MethodsConclusions Galerkin Methods
17
17 Define : Assume: ∪ n Y n dense in Y range K(X) dense in Y Then dual least squares method is convergent and ∥ R n ∥ ≤ n Example: Dual Least Squares Method Symm’s Integral EquationIntroductionProjection MethodsConclusions Galerkin Methods
18
18 Application: Symm’s Integral Equation Dirichlet problem for Laplace equation: ⊂ ℝ 2 bounded domain ∂ analytic boundary f ∈ C( ∂ ) Galerkin MethodsIntroductionProjection MethodsConclusions Symm’s Integral Equation
19
19 Symm’s Integral Equation Simple layer potential: solves BVP iff ∈ C( ∂ ) satisfies Symm’s equation: Galerkin MethodsIntroductionProjection MethodsConclusions Symm’s Integral Equation
20
20 Symm’s Integral Equation Assume ∂ has parametrization for 2 -periodic analytic function : [0,2 ] → ℝ 2, with Then Symm’s equation transforms into: with Galerkin MethodsIntroductionProjection MethodsConclusions Symm’s Integral Equation
21
21 Application: Symm’s Integral Equation Define K : H r ( 0, 2 ) → H r +1 ( 0, 2 ) and g ∈ H r ( 0, 2 ), r ≥ 0 by Define X n = Y n = { : j ∈ ℂ } Galerkin MethodsIntroductionProjection MethodsConclusions Symm’s Integral Equation
22
22 Application: Symm’s Integral Equation Approximate right-hand side g ∈ Y, ∥ g - g ∥ ≤ : (Bubnov-)Galerkin method: Least squares method: Dual least squares method: Error Estimate: Galerkin MethodsIntroductionProjection MethodsConclusions Symm’s Integral Equation
23
23 Conclusions Discretisation schemes can be used as regularisation strategies Galerkin method converges iff it provides regularisation strategy Special cases of Galerkin methods: oleast squares method odual least squares method Symm’s Integral EquationIntroductionProjection MethodsGalerkin Methods Conclusions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.