Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modeled radiances, update and summary Brad Pierce (NOAA)

Similar presentations


Presentation on theme: "Modeled radiances, update and summary Brad Pierce (NOAA)"— Presentation transcript:

1 Modeled radiances, update and summary Brad Pierce (NOAA)
GEOCAPE Regional and Urban OSSE WG members Co-Leads: Brad Pierce (NOAA) and Vijay Natraj (JPL) Regional Nature run: Brad Pierce and Allen Lenzen (CIMSS) Forward modeling: Vijay Natraj, Susan Kulawit, (JPL) Urban Nature run: Ken Pickering and Chris Loughner (NASA/GSFC) Averaging Kernel regression development: Helen Worden (NCAR) Additional contributions from Jerome Vidot (Meteo/France) and Eva Borbas (UW-Madison/SSEC) who have provided the WG with the High Spectral Resolution (HSR) IR emissivity and VIS reflectivity data bases for the OSSE studies. 3rd TEMPO Science Team Meeting, May 27-28, 2015, University of Alabama in Huntsville Huntsville, AL

2 GEOCAPE O3 OSSE Development July 2011 DISCOVER-AQ Period
Generation of Regional and Urban nature atmosphere Development of surface reflectivity and emissivity data bases Conducting UV/VIS/IR forward radiative transfer calculations on a representative subset of the profiles (14 representative urban and rural sites) Generation of multi-spectral (UV, VIS, IR) ozone retrievals from the subset of nature atmosphere radiances Development of averaging kernel (AK) regressions based on the sub-set of the nature atmosphere retrievals Generation of a full set of nature atmosphere retrievals using the AK regression applied to the original nature atmosphere profiles.

3 12 km Regional Nature Run 4 km down scaling 1.33 km Urban Nature Run
Urban Nature Run (K. Pickering/C. Loughner) CMAQ run at 4 and 1.33 km horizontal resolution; chemical boundary conditions from 12km Regional Nature Run (B. Pierce/A. Lenzen) 12 km Regional Nature Run 4 km down scaling 1.33 km Urban Nature Run

4 July 2011 Regional Nature Atmosphere:
Stratospheric temperature, water vapor, and ozone profiles from the NCEP Global Forecasting System (GFS) Troposphere temperature, water vapor, and trace gas profiles from a nested NAM-CMAQ air quality simulation that used GFS ozone and meteorology for lateral boundary conditions. Stratospheric and upper troposphere NO2, HCHO, SO2 and CO were obtained from the Real-time Air Quality Modeling System (RAQMS). Aerosol extinction calculations used Community Modeling and Analysis System (CMAS) AEROVIS software (humidity dependent aerosol mass to extinction regressions based on measurements from IMPROVE network)

5 Daily variation of ozone (ppbv, upper left) and aerosol extinction (km-1, upper right) for Atlanta, GA during July, Mean Atlanta diurnal variation of ozone (ppbv) and aerosol (km-1) are shown in the lower left and lower right, respectively.

6 Quantifying accuracy and representativeness of the
Regional Nature Run (M. Newchurch/L. Wang) Correlation between model and EPA-monitored surface ozone (July 2011) July 2011 Regional Nature run captures the variability of upper troposphere/lower stratosphere ( mb) and boundary layer ( mb) ozone well but underestimates free tropospheric ( mb) variance Correlation between model and ozonesondes at Beltsville and Edgewood

7 Hyperspectral surface reflectivity and emissivity data bases
UV (335–772 nm) Lambert equivalent reflectivity (LER) based on GOME based surface reflectance [Koelemeijer, 2003] 335.0 O3 (Huggins band) 380.0 aerosol 416.0 aerosol 440.0 NO2 463.0 O2–O2 (477 nm band) 494.5 aerosol 555.0 vegetation 610.0 aerosol 670.0 cloud detection 758.0 O2 (A band) 772.0 O2 (A band) VIS-NIR ( microns) based on MODIS BRDF hinge points developed for RTTOV, valid up to 70 degrees solar zenith [version 11, Vidot and Borbas, 2014] IR (700 to 2775 cm-1) emissivity from the UW-Madison Baseline Fit Emissivity Database [Seemann et al, 2008] The spectral gap ( cm-1) between the VIS/NIR reflectance and IR emissivity data bases is filled using dual regression fitting of spectra from the ASTER spectral library [Baldridge et al, 2009].

8

9 VLIDORT 2.6 forward modeling:
14 representative sites, every 3 days, every hour nm (TEMPO O3-UV) 0.05nm resolution convolved to TEMPO 0.6nm FWHM nm (TEMPO O3-VIS) 0.05nm resolution convolved to TEMPO 0.6nm FWHM nm (GEOCAPE TIR) TEMPO O3-UV TEMPO O3-VIS ~ 8 hours per 15 hour day per location for O3 UV-VIS using 44 cpus

10 Diurnally resolved Multi-Spectral O3 Retrieval Results
(S. Kulawik/V. Natraj) VIS UV-VIS UV UV-VIS-TIR UV-TIR TIR (nighttime) Total Troposphere km km Diurnally resolved Degrees of Freedom of Signal (DOFS) for different pressure ranges and spectral combinations for all GEOCAPE Regional OSSE sites (no VIS, UV, or UV/VIS retrievals between 02-09Z) Note UV/VIS has the same spectral range and noise as TEMPO. VIS UV-VIS UV UV-VIS-TIR UV-TIR TIR VIS UV-VIS UV UV-VIS-TIR UV-TIR TIR VIS UV-VIS UV UV-VIS-TIR UV-TIR TIR

11 How does sensitivity vary with solar zenith angle, etc?
SZA T_surf Tropos. col. O3 Helen Worden (NCAR)

12 SVD & AK Multiple Regression (H. Worden)
Parameters for multiple regression Non-pressure dependent parameters: Param. Mean Std.Dev. Min Max SZA (°) 44.4 21.3 10.3 89.8 Albedo 0.094 0.075 0.014 0.357 IR emiss. 0.95 0.006 0.94 0.96 P_tpause (mb) 118.0 11.7 83.2 316.2 P_surface (mb) 992.3 21.2 940.9 1018.2 T_surface (K) 308.8 7.5 290.6 327.3 O3 total column (1018 molecules/cm2) 8.37 0.31 7.56 9.63 O3 tropos. column 1.08 0.17 0.57 1.69

13 Pressure dependent parameters

14 SVD & Multiple Regression (MR) Trials
UV-VIS-TIR case sensitivity characterization results (a) SVD up to 681 hPa, 2 SVs retained Good results for surface & lowermost troposphere Use average AK above 681 hPa

15 SVD & Multiple Regression (MR) Trials
UV-VIS case sensitivity characterization results (a) SVD up to 681 hPa, 2 SVs retained Good results for surface & lowermost troposphere Use average AK above 681 hPa

16 GEOCAPE NO2 OSSE Development July 2011 DISCOVER-AQ Period
Forward modeling for full Regional and Urban Nature Run domain nm (TEMPO NO2-UV) 0.05nm resolution convolved to TEMPO 0.6nm FWHM We will be evaluating several approaches to perform the forward model radiance and Jacobian calculations: Same code (VLIDORT 2.6) but in scalar mode (ignoring polarization), VLIDORT in conjunction with fast PCA-based approach - developed by Vijay Natraj in collaboration with Rob Spurr Exact single scattering computation in conjunction with two-stream multiple scattering Dutch KNMI doubling-adding code (DAK)

17 References Baldridge, A. M., S.J. Hook, C.I. Grove and G. Rivera, 2009: The ASTER Spectral Library Version 2.0. Remote Sensing of Environment, vol 113, pp Koelemeijer, R. B. A., J. F. de Haan, and P. Stammes, 2003: A database of spectral surface reflectivity in the range 335–772 nm derived from 5.5 years of GOME observations, J. Geophys. Res., 108(D2), 4070, doi: /2002JD Vidot, J. and Borbas, E., 2014: Land surface VIS/NIR BRDF atlas for RTTOV-11: model and validation against SEVIRI land SAF albedo product, Q. J. R. Meteorol. Soc., DOI: /qj.2288. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Radiat. Transfer, 91, , 2005. Natraj, V., X. Liu, S. Kulawik, K. Chance, R. Chatfield, D.P. Edwards, A. Eldering, G.L. Francis, T. Kurosu, K. Pickering, R. Spurr, and H.M. Worden, 2011: Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements. Atmospheric Environment, 45, 7151–7165, DOI: /j.atmosenv


Download ppt "Modeled radiances, update and summary Brad Pierce (NOAA)"

Similar presentations


Ads by Google