Download presentation
Presentation is loading. Please wait.
Published byJuliet Clark Modified over 9 years ago
1
Medical data and text mining Linking diseases, drugs, and adverse reactions Lars Juhl Jensen
2
structured data
3
Jensen et al., Nature Reviews Genetics, 2012
4
unstructured data
6
central registries
7
individual hospitals
9
opt-out
10
opt-in
11
Danish registries
12
civil registration system
13
CPR number
14
established in 1968
15
Jensen et al., Nature Reviews Genetics, 2012
16
national discharge registry
17
14 years
18
6.2 million patients
19
45 million admissions
20
68 million records
21
119 million diagnosis
22
ICD-10
23
Jensen et al., Nature Reviews Genetics, 2012
24
not research
25
reimbursement
26
diagnosis trajectories
27
naïve approach
28
comorbidity
29
Jensen et al., Nature Reviews Genetics, 2012
30
confounding factors
31
“known knowns”
32
gender
33
age
34
type of hospital encounter
35
Jensen et al., Nature Communications, 2014
36
“known unknowns”
37
smoking
38
diet
39
“unknown unknowns”
40
reporting biases
41
matched controls
42
temporal correlations
43
multiple testing
44
trajectories
45
Jensen et al., Nature Communications, 2014
46
trajectory networks
47
Jensen et al., Nature Communications, 2014
48
key diagnoses
49
Jensen et al., Nature Communications, 2014
50
direct medical implications
51
electronic health records
52
structured data
53
Jensen et al., Nature Reviews Genetics, 2012
54
unstructured data
56
free text
57
Danish
58
busy doctors
59
typos
60
psychiatric patients
61
text mining
62
computer
63
as smart as a dog
64
teach it specific tricks
67
comprehensive dictionary
68
diseases
69
drugs
70
adverse drug reactions
71
expansion rules
72
Clozapine
73
clozapin clossapin klozapin e chlosapi n chlosapin e chlozapin chlozapin e klossapi n closapin e klozapi n klosapin
74
flexible matching
75
compound nouns
76
post-coordination rules
77
failure of kidney
78
kidney failure
79
“black list”
80
three-letter acronyms
81
pharmacovigilance
82
clinical trials
83
spontaneous reports
85
underreporting
86
data mining
87
structured data
88
medication
89
semi-structured data
90
drug indications
91
known ADRs
92
unstructured data
93
adverse drug reactions
94
temporal correlations
95
hand-crafted rules
96
Eriksson et al., Drug Safety, 2014
100
recall known ADRs
101
estimate ADR frequencies
102
Eriksson et al., Drug Safety, 2014
103
discover new ADRs
104
Drug substanceADEp-value ChlordiazepoxideNystagmus4.0e-8 SimvastatinPersonality changes8.4e-8 DipyridamoleVisual impairment4.4e-4 CitalopramPsychosis8.8e-4 BendroflumethiazideApoplexy8.5e-3 Eriksson et al., Drug Safety, 2014
105
Acknowledgments Disease trajectories Anders Bøck Jensen Tudor Oprea Pope Moseley Søren Brunak Adverse drug reactions Robert Eriksson Thomas Werge Søren Brunak EHR text mining Peter Bjødstrup Jensen Robert Eriksson Henriette Schmock Francisco S. Roque Anders Juul Marlene Dalgaard Massimo Andreatta Sune Frankild Eva Roitmann Thomas Hansen Karen Søeby Søren Bredkjær Thomas Werge Søren Brunak
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.