Download presentation
1
Trigonometric equations
Trigonometry
2
The diagram shows where the various ratios are positive
90° 90° to 180° sin positive 0° to 90° all positive 180 - S A 180° 0°,360° C 180 + T 360 - 180° to 270° tan positive 270° to 360° cos positive 270°
3
tan x° = 2·73 cos x° = -0·571 tan-1 2 · 73 = 70°
0°, 360° 90° 180° 270° A T S C 0°, 360° 90° 180° 270° x = 70° or = 250° x = = 125° or = 235°
4
Trigonometric Equations Solve the following equations,
giving two values for x between 0° and 360°. sin x° = 0·766 cos x° = 0·565 tan x° = 4·915 cos x° = 0·906 sin x° = 0·707 tan x° = 2·050 sin x° = 0·415 tan x° = 0·193
5
Trigonometric Equations
Solve the following equations, giving two values for x between 0° and 360°. cos x° = 0· sin x° 1 = 0 4cos x° 2 = tan x° 12 = 0 5sin x° + 4 = cos x° + 3 = 0 3tan x° + 2 = tan x° - 5 = 0
6
Trigonometric Equations Solutions
sin x° = 0·766 x = 50·0 or 130·0 cos x° = 0·565 x = 55·6 or 304·4 tan x° = 4·915 x = 78·5 or 258·5 cos x° = 0·906 x = 155·0 or 205·0 sin x° = 0·707 x = 225·0 or 315·0 tan x° = 2·050 x = 116·0 or 296·0 sin x° = 0·415 x = 24·5 or 155·5 tan x° = 0·193 x = 10·9 or 190·9 cos x° = 0·174 x = 100·0 or 260·0 3sin x° 1 = 0 sin x° = 13 = 0· x = 19·5 or 160·5
7
4cos x° 2 = 0 cos x° = 24 = 0·5 x = 60 or 300 5sin x° + 4 = 0 sin x° = 45 = 0·8 x = 233·1 or 306·9 3tan x° + 2 = 1 tan x° = 13 = 0· x = 161·6 or 341·6 5tan x° 12 = 0 tan x° = 125 = 2·4 x = 67·4 or 247·4 4cos x° + 3 = 0 cos x° = 34 = 0·75 x = 138·6 or 221·4
8
Solve the following equations, giving two values for x between 0° and 360°.
2cos x° + 1 = 0 5sin x° 1 = 0 8cos x° 2 = 0 5tan x° + 8 = 0 7sin x° + 3 = cos x° - 9 = 0 3sin x° + 2 = 1 4tan x° - 15 = 0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.