Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 4: Mass, Weight and Density

Similar presentations


Presentation on theme: "Unit 4: Mass, Weight and Density"— Presentation transcript:

1 Unit 4: Mass, Weight and Density
Discover PHYSICS for GCE ‘O’ Level Science Unit 4: Mass, Weight and Density

2 Unit 4.1 Mass and Weight Learning Outcomes
In this section, you’ll be able to: define mass, gravitational field and gravitational field strength g differentiate between mass and weight recall and apply weight W = m x g to solve problems 19 April 2017

3 Unit 4.1: Mass and Weight What is mass?
Mass is a measure of the amount of matter or substance in a body. The SI unit of mass is the kilogram (kg) Fig 4.1 The number and composition of atoms and molecules make up the mass of a body. 19 April 2017

4 Unit 4.1: Mass and Weight What is weight?
Weight is a force and has direction pointing towards the centre of the earth (downwards). Its SI unit is the Newton (N). This force is called gravitational force or gravity. 19 April 2017

5 Unit 4.1: Mass and Weight What is gravitational field?
The Earth’s gravity is experienced by any object near it. The region surrounding the Earth where gravity is experienced is called the gravitational field. The force experienced is strongest on the surface of the earth and gets weaker further away. Fig 4.3 Earth is surrounded by a gravitational field. Field lines are drawn to represent the gravitation field. 19 April 2017

6 Unit 4.1: Mass and Weight What is gravitational field strength?
Gravitational field strength g is defined as the gravitational force acting per unit mass on an object. On Earth, the gravitational field strength is about N kg-1 A mass of 1 kg will weigh 10 N on Earth. On Moon, the gravitational field strength is about N kg-1 A mass of 1 kg will weigh 1.6 N on Moon. 19 April 2017

7 Unit 4.1: Mass and Weight The Moon’s gravitational pull causes high and low tides of the Earth’s ocean. 19 April 2017

8 Unit 4.1: Mass and Weight How are mass and weight related?
The weight or amount of gravitational force acting on an object is dependent on its mass. The weight W can be found by W = mg where m = mass of object (in kg) g = gravitational field strength in (N kg-1) 19 April 2017

9 Unit 4.1: Mass and Weight How are mass and weight related?
Common weighing instruments such as electronic balance, spring balance and bathroom scales actually measure the weight and not the mass of an object. Using the scale on Moon will give different readings. Fig 4.7 The fastest way to lose weight. 19 April 2017

10 Unit 4.1: Mass and Weight How is mass measured?
Mass of an object does not depend on the gravitational field strength. It can be measured using the beam balance. The beam balance compares the gravitational force acting on an object with standard masses. (Unit 5) 19 April 2017

11 Unit 4.1: Mass and Weight Differences between mass and weight
Table 4.1 Differences between mass and weight. 19 April 2017

12 Unit 4.1 Mass and Weight 19 April 2017

13 Unit 4.1 Mass and Weight 19 April 2017

14 Unit 4.1 Mass and Weight Key Ideas
Mass measures the amount of matter or substance in a body. The SI unit is kilograms (kg) Weight is the gravitational force acting on a body. The SI unit is newtons (N). The weight of a body is related to its mass by the equation: W = mg Gravitational field strength, in N kg-1 is the same as the acceleration of free fall in m s-2. The weight of an object varies according to the gravitational field strength. The mass of an object is a physical property of the object that does not change. 19 April 2017

15 Unit 4.1: Mass and Weight Test Yourself 4.1
List four differences between mass and weight. 19 April 2017

16 Unit 4.1 Mass and Weight Test Yourself 4.1
Why is the mass of a body not affected by changes in the physical environment such as location? Answer: Mass is the amount of matter in the object. It does not change with physical environment. 19 April 2017

17 Unit 4.1: Mass and Weight Test Yourself 4.1
We have learnt that Earth’s gravitational field strength g (10 N kg-1) is the same as its acceleration due to free fall, ag (10 m s-2). Even though their unit are different, N kg-1 vs m s-2, they are said to be dimensionally the same. Prove that N kg-1 is the same as m s-2. Answer: By the definition of newton N, it can be written as: N = kg m s-2 Hence N kg-1 = (kg m s-2) x kg-1 = m s-2 (shown) 19 April 2017

18 Unit 4.1: Mass and Weight Test Yourself 4.1
The gravitational field strength of Jupiter is 22.9 N kg-1. An astronaut weighs 1200 N on Earth. What will his weight on Jupiter be? Answer: First, we deduce the mass of the astronaut. Wearth = m gearth = m x 10  m = 1200 / 10 = 120 kg Hence his weight on Jupiter (if he managed to reach Jupiter) is WJupiter = m gjupiter = 120 x 22.9 = 2750 N 19 April 2017

19 Unit 4.1: Mass and Weight Test Yourself 4.1
What is the difference between gravitational field strength and gravitational pull? Answer: Gravitation field strength g is the gravitational force acting per unit mass on an object. g has SI units N kg-1. Gravitational pull is the gravitational force acting on the object and this is equivalent to its weight. The weight is given by W = mg Weight has SI units of N. 19 April 2017

20 Unit 4.2: Inertia Lesson Outcomes In this section, you’ll be able to:
understand and define inertia. 19 April 2017

21 Unit 4.2: Inertia What is inertia?
Inertia of an object refers to the reluctance of the object to change its state of motion. The inertia of an object depends on its mass. An object with more mass has greater inertia. Fig Driver not wearing the seat belt. Fig Driver wearing the seat belt. 19 April 2017

22 Unit 4.3 Density Lesson Outcomes In this section, you’ll be able to:
recall and apply density = mass/volume to solve problems 19 April 2017

23 V m = r Unit 4.3: Density where  = density (in kg m-3)
Density of a substance is defined as its mass per unit volume V m = r where  = density (in kg m-3) m = mass of object (in kg) V = volume of object (in m3) The SI unit of density is kilogram per cubic metre (kg m-3) 19 April 2017

24 Unit 4.3: Density Table. 4.2 Densities of common substances.
19 April 2017

25 Unit 4.3 Density Floating Substances that float on water have lower densities than water. eg. Ice (ice = 917 kg m-3) has a lower density than water (water = 1000 kg m-3). Hence we can observe that ice floats on water. Do you know what would happen if we place the ice in turpentine? Fig 4.16 19 April 2017

26 Unit 4.3: Density 19 April 2017

27 Unit 4.3: Density 19 April 2017

28 Unit 4.3: Density 19 April 2017

29 Unit 4.3: Density 19 April 2017

30 Unit 4.3 Density Key Ideas The density of a substance is defined as its mass per unit volume. The SI units for density is kg m-3. The density of a substance is a fixed physical property. Substances that are less dense than water will float on water. To measure density of a substance, we measure its: Mass, eg. With a beam balance, and Volume, eg. Using mathematical formulae of volume (for regular objects) or measuring the volume of water it displaces (for irregular objects). 19 April 2017

31 Unit 4.2,4.3: Inertia & Density
Test Yourself 1. Two groups of people get into two identical cars. One group consists of five Sumo wrestlers while the other group consists of five marathon runners. Assuming both drivers step on the accelerator with equal force, state and explain a) which car takes off faster from rest, and b) which car will need a longer braking distance, once in motion. Answer: (a) The car with marathon runners has smaller mass. It is said to have smaller inertia. Hence it will take off faster. We can also see that by Newton’s 2nd Law, a = F/m Hence the car with smaller mass will have a larger acceleration. (b) The car with the Sumo wrestlers will have a larger breaking distance since they have a larger inertia and hence greater reluctance to come to a stop. 19 April 2017

32 Unit 4.3: Density Test Yourself 4.3
3. The density of water is 1000 kg m-3. What is the mass of 1 cm3 of water in grams? Answer: Density of water water Hence 1 cm3 of water has a mass of 1 g. 19 April 2017

33 Unit 4: Mass, Weight and Density
19 April 2017


Download ppt "Unit 4: Mass, Weight and Density"

Similar presentations


Ads by Google