Download presentation
1
EE 4780 2D Fourier Transform
2
Fourier Transform What is ahead?
1D Fourier Transform of continuous signals 2D Fourier Transform of continuous signals 2D Fourier Transform of discrete signals 2D Discrete Fourier Transform (DFT) Bahadir K. Gunturk
3
Fourier Transform: Concept
A signal can be represented as a weighted sum of sinusoids. Fourier Transform is a change of basis, where the basis functions consist of sines and cosines (complex exponentials). Bahadir K. Gunturk
4
Fourier Transform Cosine/sine signals are easy to define and interpret. However, it turns out that the analysis and manipulation of sinusoidal signals is greatly simplified by dealing with related signals called complex exponential signals. A complex number has real and imaginary parts: z = x + j*y A complex exponential signal: r*exp(j*a) =r*cos(a) + j*r*sin(a) Bahadir K. Gunturk
5
Fourier Transform: 1D Cont. Signals
Fourier Transform of a 1D continuous signal “Euler’s formula” Inverse Fourier Transform Bahadir K. Gunturk
6
Fourier Transform: 2D Cont. Signals
Fourier Transform of a 2D continuous signal Inverse Fourier Transform F and f are two different representations of the same signal. Bahadir K. Gunturk
7
Fourier Transform: Properties
Remember the impulse function (Dirac delta function) definition Fourier Transform of the impulse function Bahadir K. Gunturk
8
Fourier Transform: Properties
Fourier Transform of 1 Take the inverse Fourier Transform of the impulse function Bahadir K. Gunturk
9
Fourier Transform: Properties
Fourier Transform of cosine Bahadir K. Gunturk
10
Examples Magnitudes are shown Bahadir K. Gunturk
11
Examples Bahadir K. Gunturk
12
Fourier Transform: Properties
Linearity Shifting Modulation Convolution Multiplication Separable functions Bahadir K. Gunturk
13
Fourier Transform: Properties
Separability 2D Fourier Transform can be implemented as a sequence of 1D Fourier Transform operations. Bahadir K. Gunturk
14
Fourier Transform: Properties
Energy conservation Bahadir K. Gunturk
15
Fourier Transform: 2D Discrete Signals
Fourier Transform of a 2D discrete signal is defined as where Inverse Fourier Transform Bahadir K. Gunturk
16
Fourier Transform: Properties
Periodicity: Fourier Transform of a discrete signal is periodic with period 1. 1 1 Arbitrary integers Bahadir K. Gunturk
17
Fourier Transform: Properties
Linearity, shifting, modulation, convolution, multiplication, separability, energy conservation properties also exist for the 2D Fourier Transform of discrete signals. Bahadir K. Gunturk
18
Fourier Transform: Properties
Linearity Shifting Modulation Convolution Multiplication Separable functions Energy conservation Bahadir K. Gunturk
19
Fourier Transform: Properties
Define Kronecker delta function Fourier Transform of the Kronecker delta function Bahadir K. Gunturk
20
Fourier Transform: Properties
Fourier Transform of 1 To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that the Fourier Transform has to be periodic with period 1. Bahadir K. Gunturk
21
Impulse Train Define a comb function (impulse train) as follows
where M and N are integers Bahadir K. Gunturk
22
Impulse Train Fourier Transform of an impulse train is also an impulse train: Bahadir K. Gunturk
23
Impulse Train Bahadir K. Gunturk
24
Impulse Train In the case of continuous signals: Bahadir K. Gunturk
25
Impulse Train Bahadir K. Gunturk
26
Sampling Bahadir K. Gunturk
27
Sampling No aliasing if Bahadir K. Gunturk
28
Sampling If there is no aliasing, the original signal can be recovered from its samples by low-pass filtering. Bahadir K. Gunturk
29
Sampling Aliased Bahadir K. Gunturk
30
Sampling Anti-aliasing filter Bahadir K. Gunturk
31
Sampling Without anti-aliasing filter: With anti-aliasing filter:
Bahadir K. Gunturk
32
Anti-Aliasing a=imread(‘barbara.tif’); Bahadir K. Gunturk
33
Anti-Aliasing a=imread(‘barbara.tif’); b=imresize(a,0.25);
c=imresize(b,4); Bahadir K. Gunturk
34
Anti-Aliasing a=imread(‘barbara.tif’); b=imresize(a,0.25);
c=imresize(b,4); H=zeros(512,512); H(256-64:256+64, :256+64)=1; Da=fft2(a); Da=fftshift(Da); Dd=Da.*H; Dd=fftshift(Dd); d=real(ifft2(Dd)); Bahadir K. Gunturk
35
Sampling Bahadir K. Gunturk
36
Sampling No aliasing if and Bahadir K. Gunturk
37
Interpolation Ideal reconstruction filter: Bahadir K. Gunturk
38
Ideal Reconstruction Filter
Bahadir K. Gunturk
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.