Presentation is loading. Please wait.

Presentation is loading. Please wait.

EE 4780 2D Fourier Transform.

Similar presentations


Presentation on theme: "EE 4780 2D Fourier Transform."— Presentation transcript:

1 EE 4780 2D Fourier Transform

2 Fourier Transform What is ahead?
1D Fourier Transform of continuous signals 2D Fourier Transform of continuous signals 2D Fourier Transform of discrete signals 2D Discrete Fourier Transform (DFT) Bahadir K. Gunturk

3 Fourier Transform: Concept
A signal can be represented as a weighted sum of sinusoids. Fourier Transform is a change of basis, where the basis functions consist of sines and cosines (complex exponentials). Bahadir K. Gunturk

4 Fourier Transform Cosine/sine signals are easy to define and interpret. However, it turns out that the analysis and manipulation of sinusoidal signals is greatly simplified by dealing with related signals called complex exponential signals. A complex number has real and imaginary parts: z = x + j*y A complex exponential signal: r*exp(j*a) =r*cos(a) + j*r*sin(a) Bahadir K. Gunturk

5 Fourier Transform: 1D Cont. Signals
Fourier Transform of a 1D continuous signal “Euler’s formula” Inverse Fourier Transform Bahadir K. Gunturk

6 Fourier Transform: 2D Cont. Signals
Fourier Transform of a 2D continuous signal Inverse Fourier Transform F and f are two different representations of the same signal. Bahadir K. Gunturk

7 Fourier Transform: Properties
Remember the impulse function (Dirac delta function) definition Fourier Transform of the impulse function Bahadir K. Gunturk

8 Fourier Transform: Properties
Fourier Transform of 1 Take the inverse Fourier Transform of the impulse function Bahadir K. Gunturk

9 Fourier Transform: Properties
Fourier Transform of cosine Bahadir K. Gunturk

10 Examples Magnitudes are shown Bahadir K. Gunturk

11 Examples Bahadir K. Gunturk

12 Fourier Transform: Properties
Linearity Shifting Modulation Convolution Multiplication Separable functions Bahadir K. Gunturk

13 Fourier Transform: Properties
Separability 2D Fourier Transform can be implemented as a sequence of 1D Fourier Transform operations. Bahadir K. Gunturk

14 Fourier Transform: Properties
Energy conservation Bahadir K. Gunturk

15 Fourier Transform: 2D Discrete Signals
Fourier Transform of a 2D discrete signal is defined as where Inverse Fourier Transform Bahadir K. Gunturk

16 Fourier Transform: Properties
Periodicity: Fourier Transform of a discrete signal is periodic with period 1. 1 1 Arbitrary integers Bahadir K. Gunturk

17 Fourier Transform: Properties
Linearity, shifting, modulation, convolution, multiplication, separability, energy conservation properties also exist for the 2D Fourier Transform of discrete signals. Bahadir K. Gunturk

18 Fourier Transform: Properties
Linearity Shifting Modulation Convolution Multiplication Separable functions Energy conservation Bahadir K. Gunturk

19 Fourier Transform: Properties
Define Kronecker delta function Fourier Transform of the Kronecker delta function Bahadir K. Gunturk

20 Fourier Transform: Properties
Fourier Transform of 1 To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that the Fourier Transform has to be periodic with period 1. Bahadir K. Gunturk

21 Impulse Train Define a comb function (impulse train) as follows
where M and N are integers Bahadir K. Gunturk

22 Impulse Train Fourier Transform of an impulse train is also an impulse train: Bahadir K. Gunturk

23 Impulse Train Bahadir K. Gunturk

24 Impulse Train In the case of continuous signals: Bahadir K. Gunturk

25 Impulse Train Bahadir K. Gunturk

26 Sampling Bahadir K. Gunturk

27 Sampling No aliasing if Bahadir K. Gunturk

28 Sampling If there is no aliasing, the original signal can be recovered from its samples by low-pass filtering. Bahadir K. Gunturk

29 Sampling Aliased Bahadir K. Gunturk

30 Sampling Anti-aliasing filter Bahadir K. Gunturk

31 Sampling Without anti-aliasing filter: With anti-aliasing filter:
Bahadir K. Gunturk

32 Anti-Aliasing a=imread(‘barbara.tif’); Bahadir K. Gunturk

33 Anti-Aliasing a=imread(‘barbara.tif’); b=imresize(a,0.25);
c=imresize(b,4); Bahadir K. Gunturk

34 Anti-Aliasing a=imread(‘barbara.tif’); b=imresize(a,0.25);
c=imresize(b,4); H=zeros(512,512); H(256-64:256+64, :256+64)=1; Da=fft2(a); Da=fftshift(Da); Dd=Da.*H; Dd=fftshift(Dd); d=real(ifft2(Dd)); Bahadir K. Gunturk

35 Sampling Bahadir K. Gunturk

36 Sampling No aliasing if and Bahadir K. Gunturk

37 Interpolation Ideal reconstruction filter: Bahadir K. Gunturk

38 Ideal Reconstruction Filter
Bahadir K. Gunturk


Download ppt "EE 4780 2D Fourier Transform."

Similar presentations


Ads by Google