Download presentation
Presentation is loading. Please wait.
1
Pairwise sequence Alignment
2
Sequence Alignment Sequence analysis is the process of making biological inferences from the known sequence of monomers in protein, DNA and RNA polymers.
3
Complete DNA Sequences
More than 400 complete genomes have been sequenced
4
Evolution
5
Sequence alignment Comparing DNA/protein sequences for
Similarity Homology Prediction of function Construction of phylogeny Shotgun assembly End-space-free alignment / overlap alignment Finding motifs
6
Sequence Alignment | |||| ||||| ||| TGGTCACATCTGCCGC
Procedure of comparing two (pairwise) or more (multiple) sequences by searching for a series of individual characters that are in the same order in the sequences GCTAGTCAGATCTGACGCTA | |||| ||||| ||| TGGTCACATCTGCCGC
7
Sequence Alignment AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC Definition Given two strings x = x1x2...xM, y = y1y2…yN, an alignment is an assignment of gaps to positions 0,…, M in x, and 0,…, N in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence
8
Sources of variation Nucleotide substitution
Replication error Chemical reaction Insertions or deletions (indels) Unequal crossing over Replication slippage Duplication a single gene (complete gene duplication) part of a gene (internal or partial gene duplication) Domain duplication Exon shuffling part of a chromosome (partial polysomy) an entire chromosome (aneuploidy or polysomy) the whole genome (polyploidy)
9
Common mutations in DNA
Substitution: A C G T T G A C A C G A T G A C Deletion: A C G A C Insertion: A C G C A A T T G A C
11
Seq.Align. Protein Function
More than 25% sequence identity ? Similar 3D structure ? Similar function ? Similar sequences produce similar proteins
12
Differing rates of DNA evolution
Functional/selective constraints (particular features of coding regions, particular features in 5' untranslated regions) Variation among different gene regions with different functions (different parts of a protein may evolve at different rates). Within proteins, variations are observed between surface and interior amino acids in proteins (order of magnitude difference in rates in haemoglobins) charged and non-charged amino acids protein domains with different functions regions which are strongly constrained to preserve particular functions and regions which are not different types of proteins -- those with constrained interaction surfaces and those without
13
Common assumptions All nucleotide sites change independently
The substitution rate is constant over time and in different lineages The base composition is at equilibrium The conditional probabilities of nucleotide substitutions are the same for all sites, and do not change over time Most of these are not true in many cases…
14
Pairwise alignments in the 1950s
b-corticotropin (sheep) Corticotropin A (pig) ala gly glu asp asp glu asp gly ala glu asp glu CYIQNCPLG CYFQNCPRG Oxytocin Vasopressin
15
globins: a- b- myoglobin Early example of sequence alignment: globins (1961) H.C. Watson and J.C. Kendrew, “Comparison Between the Amino-Acid Sequences of Sperm Whale Myoglobin and of Human Hæmoglobin.” Nature 190: , 1961.
17
Pairwise sequence alignment is the most
fundamental operation of bioinformatics • It is used to decide if two proteins (or genes) are related structurally or functionally • It is used to identify domains or motifs that are shared between proteins It is the basis of BLAST searching (next week) • It is used in the analysis of genomes
18
Pairwise alignment: protein sequences can be more informative than DNA
• protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties • codons are degenerate: changes in the third position often do not alter the amino acid that is specified • protein sequences offer a longer “look-back” time DNA sequences can be translated into protein, and then used in pairwise alignments
19
Page 54
20
Pairwise alignment: protein sequences can be more informative than DNA
• DNA can be translated into six potential proteins 5’ CAT CAA 5’ ATC AAC 5’ TCA ACT 5’ CATCAACTACAACTCCAAAGACACCCTTACACATCAACAAACCTACCCAC 3’ 3’ GTAGTTGATGTTGAGGTTTCTGTGGGAATGTGTAGTTGTTTGGATGGGTG 5’ 5’ GTG GGT 5’ TGG GTA 5’ GGG TAG
21
Pairwise alignment: protein sequences can be more informative than DNA
Many times, DNA alignments are appropriate --to confirm the identity of a cDNA --to study noncoding regions of DNA --to study DNA polymorphisms --example: Neanderthal vs modern human DNA Query: 181 catcaactacaactccaaagacacccttacacccactaggatatcaacaaacctacccac 240 |||||||| |||| |||||| ||||| | ||||||||||||||||||||||||||||||| Sbjct: 189 catcaactgcaaccccaaagccacccct-cacccactaggatatcaacaaacctacccac 247
22
retinol-binding protein
(NP_006735) b-lactoglobulin (P02754) Page 42
23
Definitions Pairwise alignment
The process of lining up two or more sequences to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.
24
Definitions Homology Similarity attributed to descent from a common ancestor. Page 42
25
Definitions Homology Identity
Similarity attributed to descent from a common ancestor. Identity The extent to which two (nucleotide or amino acid) sequences are invariant. RBP: RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 + K GTW++ MA L A V T L+ W+ glycodelin: QTKQDLELPKLAGTWHSMAMA-TNNISLMATLKAPLRVHITSLLPTPEDNLEI V LHRWEN 81 Page 44
26
Definitions: two types of homology
Orthologs Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function. Paralogs Homologous sequences within a single species that arose by gene duplication. Page 43
27
Orthologs: members of a gene (protein) family in various organisms.
common carp Orthologs: members of a gene (protein) family in various organisms. This tree shows RBP orthologs. zebrafish rainbow trout teleost African clawed frog chicken human mouse horse rat pig cow rabbit 10 changes Page 43
28
Paralogs: members of a gene (protein) family within a species Page 44
apolipoprotein D Paralogs: members of a gene (protein) family within a species retinol-binding protein 4 Complement component 8 Alpha-1 Microglobulin /bikunin prostaglandin D2 synthase progestagen- associated endometrial protein neutrophil gelatinase- associated lipocalin Odorant-binding protein 2A Lipocalin 1 10 changes Page 44
30
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Page 46
31
Definitions Similarity Identity Conservation
The extent to which nucleotide or protein sequences are related. It is based upon identity plus conservation. Identity The extent to which two sequences are invariant. Conservation Changes at a specific position of an amino acid or (less commonly, DNA) sequence that preserve the physico-chemical properties of the original residue.
32
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Identity (bar) Page 46
33
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Somewhat similar (one dot) Very similar (two dots) Page 46
34
Definitions Pairwise alignment
The process of lining up two or more sequences to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology. Page 47
35
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Internal gap Terminal gap Page 46
36
Gaps • Positions at which a letter is paired with a null
are called gaps. • Gap scores are typically negative. • Since a single mutational event may cause the insertion or deletion of more than one residue, the presence of a gap is ascribed more significance than the length of the gap. Thus there are separate penalties for gap creation and gap extension. • In BLAST, it is rarely necessary to change gap values from the default.
37
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin
38
Pairwise alignment of retinol-binding protein
from human (top) and rainbow trout (O. mykiss) 1 .MKWVWALLLLA.AWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP 48 :: || || || .||.||. .| :|||:.|:.| |||.||||| 1 MLRICVALCALATCWA...QDCQVSNIQVMQNFDRSRYTGRWYAVAKKDP 47 49 EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED 98 |||| ||:||:|||||.|.|.||| ||| :||||:.||.| ||| || | 48 VGLFLLDNVVAQFSVDESGKMTATAHGRVIILNNWEMCANMFGTFEDTPD 97 99 PAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADS 148 ||||||:||| ||:|| ||||||::||||| ||: |||| ..||||| | 98 PAKFKMRYWGAASYLQTGNDDHWVIDTDYDNYAIHYSCREVDLDGTCLDG 147 149 YSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNLL 199 |||:||| | || || |||| :..|:| .|| : | |:|: 148 YSFIFSRHPTGLRPEDQKIVTDKKKEICFLGKYRRVGHTGFCESS
39
Pairwise sequence alignment allows us
to look back billions of years ago (BYA) Origin of life Earliest fossils Origin of eukaryotes Eukaryote/ archaea Fungi/animal Plant/animal insects 4 3 2 1 Page 48
40
Multiple sequence alignment of
glyceraldehyde 3-phosphate dehydrogenases fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA fly KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST human KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST plant KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST yeast KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST archaeon KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST fly GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK human GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV plant GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA yeast GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA Page 49
41
Multiple sequence alignment of human lipocalin paralogs
~~~~~EIQDVSGTWYAMTVDREFPEMNLESVTPMTLTTL.GGNLEAKVTM lipocalin 1 LSFTLEEEDITGTWYAMVVDKDFPEDRRRKVSPVKVTALGGGNLEATFTF odorant-binding protein 2a TKQDLELPKLAGTWHSMAMATNNISLMATLKAPLRVHITSEDNLEIVLHR progestagen-assoc. endo. VQENFDVNKYLGRWYEIEKIPTTFENGRCIQANYSLMENGNQELRADGTV apolipoprotein D VKENFDKARFSGTWYAMAKDPEGLFLQDNIVAEFSVDETGNWDVCADGTF retinol-binding protein LQQNFQDNQFQGKWYVVGLAGNAI.LREDKDPQKMYATIDKSYNVTSVLF neutrophil gelatinase-ass. VQPNFQQDKFLGRWFSAGLASNSSWLREKKAALSMCKSVDGGLNLTSTFL prostaglandin D2 synthase VQENFNISRIYGKWYNLAIGSTCPWMDRMTVSTLVLGEGEAEISMTSTRW alpha-1-microglobulin PKANFDAQQFAGTWLLVAVGSACRFLQRAEATTLHVAPQGSTFRKLD complement component 8 Page 49
42
General approach to pairwise alignment
Choose two sequences Select an algorithm that generates a score Allow gaps (insertions, deletions) Score reflects degree of similarity Alignments can be global or local Estimate probability that the alignment occurred by chance
43
Calculation of an alignment score
44
Where we’re heading in the next 10 minutes: creating a set of “scoring matrices” that let us assign scores for each aligned amino acid in a pairwise alignment. What should the score be when a serine matches a serine, or a threonine, or a valine? Can we devise “lenient” scoring systems to help us align distantly related proteins, and more conservative scoring systems to align closely related proteins?
45
lys found at 58% of arg sites
Emile Zuckerkandl and Linus Pauling (1965) considered substitution frequencies in 18 globins (myoglobins and hemoglobins from human to lamprey). Black: identity Gray: very conservative substitutions (>40% occurrence) White: fairly conservative substitutions (>21% occurrence) Red: no substitutions observed Page 80
46
Page 80
47
Dayhoff’s 34 protein superfamilies
Accepted point mutations Protein PAMs per 100 million years Ig kappa chain 37 Kappa casein 33 Lactalbumin Hemoglobin a 12 Myoglobin Insulin Histone H Ubiquitin 400 fold From 1978 Page 50
48
Pairwise alignment of human (NP_005203)
versus mouse (NP_031812) ubiquitin
49
Multiple sequence alignment of
glyceraldehyde 3-phosphate dehydrogenases fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA fly KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST human KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST plant KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST yeast KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST archaeon KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST fly GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK human GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV plant GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA yeast GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA
50
From closely related protein sequences (at least 85% identity)
Dayhoff’s numbers of “accepted point mutations”: what amino acid substitutions occur in proteins? From closely related protein sequences (at least 85% identity) Numbers of APM, multiplied by 10, in 1572 cases of amino acid substitutions from closely related sequences
51
The relative mutability of amino acids
Asn His 66 Ser Arg 65 Asp Lys 56 Glu Pro 56 Ala Gly 49 Thr 97 Tyr 41 Ile 96 Phe 41 Met 94 Leu 40 Gln 93 Cys 20 Val 74 Trp 18 Describes how often each amino acid is likely to change over a short evolutionary period Page 53
52
Normalized frequencies of amino acids
Gly 8.9% Arg 4.1% Ala 8.7% Asn 4.0% Leu 8.5% Phe 4.0% Lys 8.1% Gln 3.8% Ser 7.0% Ile 3.7% Val 6.5% His 3.4% Thr 5.8% Cys 3.3% Pro 5.1% Tyr 3.0% Glu 5.0% Met 1.5% Asp 4.7% Trp 1.0% blue=6 codons; red=1 codon Page 53
53
Page 54
54
Dayhoff’s PAM1 mutation probability matrix
There is 98.67%chance that A will be replaced by A over an evolutionary distance of 1 PAM Original amino acid Each element shows the probability that an original amino acid j (columns)will be replaced byanother amino acid i (rows) for 1% sequence divergence Replaced amino acid
55
Dayhoff’s PAM1 mutation probability matrix
Each element of the matrix shows the probability that an original amino acid (top) will be replaced by another amino acid (side)
56
Substitution Matrix A substitution matrix contains values proportional
to the probability that amino acid i mutates into amino acid j for all pairs of amino acids. Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids. Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution. The two major types of substitution matrices are PAM and BLOSUM.
57
Point-accepted mutations
PAM matrices: Point-accepted mutations PAM matrices are based on global alignments of closely related proteins. The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence. Other PAM matrices are extrapolated from PAM1. All the PAM data come from closely related proteins (>85% amino acid identity)
58
Dayhoff’s PAM1 mutation probability matrix
Page 55
59
Dayhoff’s PAM0 mutation probability matrix:
the rules for extremely slowly evolving proteins Top: original amino acid Side: replacement amino acid Page 56
60
Dayhoff’s PAM2000 mutation probability matrix:
the rules for very distantly related proteins PAM A Ala R Arg N Asn D Asp C Cys Q Gln E Glu G Gly 8.7% 4.1% N 4.0% D 4.7% C 3.3% Q 3.8% E 5.0% G 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% PAM1 matrix is multiplied 2000 times by itself Top: original amino acid Side: replacement amino acid
61
PAM250 mutation probability matrix
Top: original amino acid Side: replacement amino acid Page 57
62
PAM250 log odds scoring matrix S(a,b)= 10 log10 (Mab/Pb) Page 58
63
Why do we go from a mutation probability matrix to a log odds matrix?
We want a scoring matrix so that when we do a pairwise alignment (or a BLAST search) we know what score to assign to two aligned amino acid residues. Logarithms are easier to use for a scoring system. They allow us to sum the scores of aligned residues (rather than having to multiply them). Page 57
68
How do we go from a mutation probability matrix to a log odds matrix?
The cells in a log odds matrix consist of an “odds ratio”: the probability that an alignment is authentic the probability that the alignment was random The score S for an alignment of residues a,b is given by: S(a,b) = 10 log10 (Mab/pb) As an example, for tryptophan, S(a,tryptophan) = 10 log10 (0.55/0.010) = 17.4 Normalized frequency of W is 0.01
69
What do the numbers mean
in a log odds matrix? S(a,tryptophan) = 10 log10 (0.55/0.010) = 17.4 A score of +17 for tryptophan means that this alignment is 50 times more likely than a chance alignment of two Trp residues. S(a,b) = 17 Probability of replacement (Mab/pb) = x Then 17 = 10 log10 x 1.7 = log10 x 101.7 = x = 50 Page 58
70
What do the numbers mean
in a log odds matrix? A score of +2 indicates that the amino acid replacement occurs 1.6 times as frequently as expected by chance. A score of 0 is neutral. A score of –10 indicates that the correspondence of two amino acids in an alignment that accurately represents homology (evolutionary descent) is one tenth as frequent as the chance alignment of these amino acids. Page 58
71
PAM250 log odds scoring matrix Page 58
72
PAM10 log odds scoring matrix Page 59
73
Rat versus mouse RBP Rat versus bacterial lipocalin
74
Comparing two proteins with a PAM1 matrix
gives completely different results than PAM250! Consider two distantly related proteins. A PAM40 matrix is not forgiving of mismatches, and penalizes them severely. Using this matrix you can find almost no match. hsrbp, 136 CRLLNLDGTC btlact, 3 CLLLALALTC * ** * ** A PAM250 matrix is very tolerant of mismatches. 24.7% identity in 81 residues overlap; Score: 77.0; Gap frequency: 3.7% hsrbp, 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDV btlact, 21 QTMKGLDIQKVAGTWYSLAMAASD-ISLLDAQSAPLRVYVEELKPTPEGDLEILLQKWEN * **** * * * * ** * hsrbp, CADMVGTFTDTEDPAKFKM btlact, 80 GECAQKKIIAEKTKIPAVFKI ** * ** ** Page 60
75
BLOSUM Matrices BLOSUM matrices are based on local alignments.
BLOSUM stands for blocks substitution matrix. BLOSUM62 is a matrix calculated from comparisons of sequences with no less than 62% divergence. Page 60
76
BLOSUM Matrices 100 collapse Percent amino acid identity 62 30
77
BLOSUM Matrices 100 100 100 collapse collapse 62 62 62 collapse
Percent amino acid identity 30 30 30 BLOSUM80 BLOSUM62 BLOSUM30
78
BLOSUM Matrices All BLOSUM matrices are based on observed alignments;
they are not extrapolated from comparisons of closely related proteins. The BLOCKS database contains thousands of groups of multiple sequence alignments. BLOSUM62 is the default matrix in BLAST 2.0. Though it is tailored for comparisons of moderately distant proteins, it performs well in detecting closer relationships. A search for distant relatives may be more sensitive with a different matrix. Page 60
79
BLOSUM Scoring Matrices
•In the Dayhoff model, the scoring values are derived from protein sequences with at least 85% identity • Alignments are, however, most often performed on sequences of less similarity, and the scoring matrices for use in these cases are calculated from the 1 PAM matrix • Henikoff and Henikoff (1992) have therefore developed scoring matrices based on known alignments of more diverse sequences
80
BLOSUM Scoring Matrices
• They take a group of related proteins and produce a set of blocks representing this group, where a block is defined as an ungapped region of aligned amino acids • An example of two blocks is K I F I M K N L F K T R K I F K T K K L F E S R K I F K G R G D E V K G D S K K G D P K A G D A E R G D A A K
81
• The Henikoffs used over 2000 blocks in order to derive
their scoring matrices • For each column in each block they counted the number of occurrences of each pair of amino acids, when all pairs of segments were used • Then the frequency distribution of all 210 different pairs of amino acids were found • A block of length w from an alignment of m sequences makes (wm(m-1))/2 pairs of amino acids
82
We define • hab as the number of occurrences of the amino acid pair (ab) (note that hab=hba) • T as the total number of pairs in the alignment where ≥ is interpreted as a total ordering over the amino acids • fab=hab/T (the frequency of observed pairs)
86
Developing Scoring Matrices for Different Evolutionary Distances
• The procedure for developing a BLOSUM X matrix 1. Collect a set of multiple alignments 2. Find the blocks 3. Group the segments with an X% identity 4. Count the occurrences of all pairs of amino acids 5. Develop the matrix, as explained before • BLOSUM-62 is often used as the standard for ungapped alignments • For gapped alignments, BLOSUM-50 is more often used
87
Blosum62 scoring matrix Page 61
88
By use of relative entropy, it can be found that PAM250 corresponds to BLOSUM-45 and PAM160 corresponds to BLOSUM-62, and PAM120 corresponds to BLOSUM-80 Rat versus mouse RBP Rat versus bacterial lipocalin Page 61
89
Major Differences between PAM and BLOSUM
90
Point-accepted mutations
PAM matrices: Point-accepted mutations PAM matrices are based on global alignments of closely related proteins. The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence. Other PAM matrices are extrapolated from PAM1. All the PAM data come from closely related proteins (>85% amino acid identity)
91
Two randomly diverging protein sequences change
in a negatively exponential fashion Percent identity “twilight zone” Evolutionary distance in PAMs Page 62
92
At PAM1, two proteins are 99% identical
At PAM10.7, there are 10 differences per 100 residues At PAM80, there are 50 differences per 100 residues At PAM250, there are 80 differences per 100 residues PAM250 Percent identity Differences per 100 residues “twilight zone” PAM matrices reflect different degrees of divergence Page 62
93
PAM: “Accepted point mutation”
Two proteins with 50% identity may have 80 changes per 100 residues. (Why? Because any residue can be subject to back mutations.) Proteins with 20% to 25% identity are in the “twilight zone” and may be statistically significantly related. PAM or “accepted point mutation” refers to the “hits” or matches between two sequences (Dayhoff & Eck, 1968) Page 62
94
Ancestral sequence Sequence 1 Sequence 2 ACCCTAC A no change A
C single substitution C --> A C multiple substitutions C --> A --> T C --> G coincidental substitutions C --> A T --> A parallel substitutions T --> A A --> C --> T convergent substitutions A --> T C back substitution C --> T --> C Sequence 1 Sequence 2 Li (1997) p.70
97
Percent identity between two proteins: What percent is significant?
100% 80% 65% 30% 23% 19%
98
An alignment scoring system is required
to evaluate how good an alignment is • positive and negative values assigned • gap creation and extension penalties • positive score for identities • some partial positive score for conservative substitutions • global versus local alignment • use of a substitution matrix
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.