Presentation is loading. Please wait.

Presentation is loading. Please wait.

1.4 – Solving Absolute Value Equations. Absolute Value.

Similar presentations


Presentation on theme: "1.4 – Solving Absolute Value Equations. Absolute Value."— Presentation transcript:

1 1.4 – Solving Absolute Value Equations

2 Absolute Value

3 1.4 – Solving Absolute Value Equations Absolute Value–unit value only

4 1.4 – Solving Absolute Value Equations Absolute Value–unit value only

5 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs)

6 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5|

7 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5

8 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| =

9 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1

10 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3

11 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=

12 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4

13 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 +

14 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5

15 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3)

16 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7|

17 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4

18 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 +

19 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15

20 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7|

21 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4

22 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 +

23 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22|

24 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4

25 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 +

26 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 + 22

27 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 + 22 = 23.4

28 Example 2

29 Example 2 Solve |x – 18| = 5.

30 |x – 18| = 5

31 Example 2 Solve |x – 18| = 5. |x – 18| = 5

32 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5

33 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5

34 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5

35 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5

36 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5

37 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18

38 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 x = 23

39 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23

40 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13

41 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3

42 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0.

43 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0

44 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9

45 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9

46 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note:

47 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!

48 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!

49 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!

50 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!

51 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!

52 Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number! x = Ø

53 Example 4

54 Example 4 Solve |x + 6| = 3x – 2.

55 |x + 6| = 3x – 2

56 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2

57 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2

58 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2

59 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2)

60 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2)

61 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6

62 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 =

63 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x

64 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x –

65 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2)

66 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2

67 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6

68 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x

69 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2

70 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x

71 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -2x + 6 = -2

72 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -2x + 6 = -2 - 6 -6

73 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -2x + 6 = -2 - 6 -6 -2x

74 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -2x + 6 = -2 - 6 -6 -2x = -8

75 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -2x + 6 = -2 - 6 -6 -2x = -8 -2 -2

76 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -2x + 6 = -2 - 6 -6 -2x = -8 -2 -2 x = 4

77 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -2 - 6 -6 -2x = -8 -2 -2 x = 4

78 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x - 6 -6 -2x = -8 -2 -2 x = 4

79 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 - 6 -6 -2x = -8 -2 -2 x = 4

80 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 -2x = -8 -2 -2 x = 4

81 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -8 -2 -2 x = 4

82 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -84x = -4 -2 -2 x = 4

83 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -84x = -4 -2 -2 4 4 x = 4

84 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -84x = -4 -2 -2 4 4 x = 4 OR x = -1

85 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -84x = -4 -2 -2 4 4 x = 4 OR x = -1

86 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -84x = -4 -2 -2 4 4 x = 4 OR x = -1

87 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -84x = -4 -2 -2 4 4 x = 4 OR x = -1

88 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -84x = -4 -2 -2 4 4 x = 4 OR x = -1

89 Example 4 Solve |x + 6| = 3x – 2. |x + 6| = 3x – 2 x + 6 = 3x – 2 x + 6 = -(3x – 2) x + 6 = -3x – (-2) x + 6 = 3x – 2 x + 6 = -3x + 2 -3x -3x +3x +3x -2x + 6 = -24x + 6 = 2 - 6 -6 - 6 -6 -2x = -84x = -4 -2 -2 4 4 x = 4 OR x = -1


Download ppt "1.4 – Solving Absolute Value Equations. Absolute Value."

Similar presentations


Ads by Google