Download presentation
Presentation is loading. Please wait.
Published byBernice Davidson Modified over 9 years ago
1
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris École des Ponts ParisTech INRIA Saclay, Île-de-France Joint work with Phil Torr, Daphne Koller
2
Energy Minimization Variables V = { V 1, V 2, …, V n }
3
Energy Minimization Variables V = { V 1, V 2, …, V n }
4
Energy Minimization VaVa VbVb Labels L = { l 1, l 2, …, l h } Variables V = { V 1, V 2, …, V n } Labeling f: { 1, 2, …, n} {1, 2, …, h} E(f) = Σ a θ a (f(a)) + Σ (a,b) θ ab (f(a),f(b)) min f θ a (f(a)) θ b (f(b)) θ ab (f(a),f(b))
5
Energy Minimization VaVa VbVb E(f) min f NP hard = Σ a θ a (f(a)) + Σ (a,b) θ ab (f(a),f(b))
6
Metric Labeling VaVa VbVb E(f) min f = Σ a θ a (f(a)) + Σ (a,b) θ ab (f(a),f(b))
7
Metric Labeling VaVa VbVb s ab is non-negative d(.) is a metric distance function Low-level vision applications NP hard E(f) min f = Σ a θ a (f(a)) + Σ (a,b) s ab d(f(a),f(b))
8
Minka. Expectation Propagation for Approximate Bayesian Inference, UAI, 2001 Murphy et al. Loopy Belief Propagation: An Empirical Study, UAI, 1999 Winn et al. Variational Message Passing, JMLR, 2005 Yedidia et al. Generalized Belief Propagation, NIPS, 2001 Besag. On the Statistical Analysis of Dirty Pictures, JRSS, 1986 Boykov et al. Fast Approximate Energy Minimization via Graph Cuts, PAMI, 2001 Komodakis et al. Fast, Approximately Optimal Solutions for Single and Dynamic MRFs, CVPR, 2007 Lempitsky et al. Fusion Moves for Markov Random Field Optimization, PAMI, 2010 Chekuri et al. Approximation Algorithms for Metric Labeling, SODA, 2001 Goemans et al. Improved Approximate Algorithms for Maximum-Cut, JACM, 1995 Muramatsu et al. A New SOCP Relaxation for Max-Cut, JORJ, 2003 Ravikumar et al. QP Relaxations for Metric Labeling, ICML, 2006 Alahari et al. Dynamic Hybrid Algorithms for MAP Inference, PAMI 2010 Kohli et al. On Partial Optimality in Multilabel MRFs, ICML, 2008 Rother et al. Optimizing Binary MRFs via Extended Roof Duality, CVPR, 2007...... Approximate Algorithms
9
Multiplicative Bounds f*: Optimal Labelingf: Estimated Labeling Σ a θ a (f(a)) + Σ (a,b) s ab d(f(a),f(b)) Σ a θ a (f*(a)) + Σ (a,b) s ab d(f*(a),f*(b)) ≥
10
Multiplicative Bounds f*: Optimal Labelingf: Estimated Labeling ≤ M Σ a θ a (f(a)) + Σ (a,b) s ab d(f(a),f(b)) Σ a θ a (f*(a)) + Σ (a,b) s ab d(f*(a),f*(b))
11
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models
12
Integer Linear Program Number of facets grows exponentially in problem size Minimize a linear function over a set of feasible solutions
13
Linear Programming Relaxation Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003
14
Conic Programming Relaxation Muramatsu and Suzuki, 2003; Ravikumar and Lafferty, 2006
15
Convex Relaxations Time LP 1976 SOCP 2003 QP 2006 Tightness Expected Analyzed Kumar, Kolmogorov and Torr, NIPS 2007
16
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models
17
Move-Making Algorithms Space of All Labelings f
18
Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a) {f(a)} U {l α } Update f = f α Boykov, Veksler and Zabih, 2001 Repeat until convergence
19
Expansion Algorithm Variables take label l α or retain current label Slide courtesy Pushmeet Kohli
20
Expansion Algorithm Sky House Tree Ground Initialize with TreeStatus:Expand GroundExpand HouseExpand Sky Slide courtesy Pushmeet Kohli Variables take label l α or retain current label
21
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models
22
Multiplicative Bounds ExpansionLP Potts2M2 d max = max i≠ k d(i,k)d min = min i≠ k d(i,k) M = d max d min
23
Multiplicative Bounds ExpansionLP Potts22 Metric2MO(log h) h = number of putative labels
24
Multiplicative Bounds ExpansionLP Potts22 Metric2MO(log h) Truncated Linear 2M2 + √2 Truncated Quadratic 2MO(√M)
25
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models Kumar and Koller, UAI 2009
26
Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a) {f(a)} U {α} Update f = f α Repeat until convergence Boykov, Veksler and Zabih, 2001
27
Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a) {f(a)} U {α} Update f = f α Repeat until convergence
28
Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a) {f(a)} U {M α (a)} Update f = f α Repeat until convergence Any label M α (a) instead of the same label α
29
Modified Expansion Algorithm Multiplicative Bound = 2 d max = max i,k d(i,k) d max d min i = M α (a), k = M β (b), α ≠ β d min = min i,k d(i,k) i = M α (a), k = M β (b), α ≠ β
30
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Visualizing Metrics Uniform Metric Hierarchically Separated Tree (HST) Metrics General Metrics Move-Making for Truncated Convex Models
31
Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l3 w1w1 w2w2 w3w3 w4w4 w5w5 w6w6 w7w7 w9w9 w8w8 d( i, j ) : shortest path defined by the graph
32
Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l3 1 15 1 1 1 1 13 2 d( i, j ) : shortest path defined by the graph
33
Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l3 1 15 1 1 1 1 13 2 d( i, j ) : shortest path defined by the graph d(1,4) = 3
34
Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l3 1 15 1 1 1 1 13 2 d( i, j ) : shortest path defined by the graph d(1,2) = 5
35
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Visualizing Metrics Uniform Metric Hierarchically Separated Tree (HST) Metrics General Metrics Move-Making for Truncated Convex Models
36
Uniform Metric l1l1 l2l2 l3l3 w w w
37
Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a) {f(a)} U {M α (a)} Update f = f α Repeat until convergence Any label M α (a) instead of the same label α
38
Uniform Metric l1l1 l2l2 l3l3 w w w M α (a) = l α for all random variables V a Multiplicative Bound = 2 d max = max i,k d(i,k) d max d min i = M α (a), k = M β (b), α ≠ β d min = min i,k d(i,k) i = M α (a), k = M β (b), α ≠ β
39
Uniform Metric l1l1 l2l2 l3l3 w w w M α (a) = l α for all random variables V a Multiplicative Bound = 2 d max = 2w d max d min d min = min i,k d(i,k) i = M α (a), k = M β (b), α ≠ β
40
Uniform Metric l1l1 l2l2 l3l3 w w w M α (a) = l α for all random variables V a Multiplicative Bound = 2 d max = 2w d max d min d min = 2w
41
Uniform Metric l1l1 l2l2 l3l3 w w w M α (a) = l α for all random variables V a Multiplicative Bound = 2 d max = 2w d min = 2w Same bound as LP
42
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Visualizing Metrics Uniform Metric Hierarchically Separated Tree (HST) Metrics General Metrics Move-Making for Truncated Convex Models
43
HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 Graph is a Tree. Labels are leaves
44
HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 Edge lengths for all children are the same
45
HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 Edge lengths decrease from root to leaf by factor r ≥ 2
46
HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 w 2 ≤ w 1 /r w 3 ≤ w 1 /r w 4 ≤ w 1 /r
47
HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 w 5 ≤ w 2 /r w 6 ≤ w 2 /r w 7 ≤ w 3 /rw 8 ≤ w 3 /r
48
Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4
49
l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 M α (a) = l α
50
Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 Multiplicative bound of 2 for (a,b) where f*(a), f*(b) {1,2,3}
51
Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 Multiplicative bound of 2 for (a,b) where f*(a), f*(b) {4,5,6} f2f2
52
Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 Multiplicative bound of 2 for (a,b) where f*(a), f*(b) {7,8,9} f2f2 f3f3
53
Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 f2f2 f3f3 M 1 (a) = f 1 (a)M 2 (a) = f 2 (a) M 3 (a) = f 3 (a)
54
Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 f2f2 f3f3 Multiplicative bound of at most 2(1+1/r)
55
Metric Labeling for 4-level HST Multiplicative bound of at most 2(1+1/r + 1/r 2 ) w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8
56
Metric Labeling for L-level HST Multiplicative bound = 2(1+1/r + … + 1/r L-2 ) < 2r/(r-1) Constant bound for all HST metrics
57
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Visualizing Metrics Uniform Metric Hierarchically Separated Tree (HST) Metrics General Metrics Move-Making for Truncated Convex Models
58
General Metrics Any metric can be approximated using a mixture of O(h log h) HST metrics with distortion O(log h). Fakcharoenphol, Rao and Talwar, 2003 Σ T ρ(T)d T (i,j) Σ T ρ(T) = 1 d(i,j) ≤ ≤ O(log h) d(i,j)
59
Metric Labeling for General Metrics Approximate d using Σ T ρ(T)d T Solve metric labeling for each HST d T Pick the labeling with the lowest energy Multiplicative bound = 2r/(r-1)*O(log h) = O(log h) Same bound as LP
60
Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models Kumar and Torr, NIPS 2008
61
Truncated Convex Models VaVa VbVb s ab is non-negative d(.) is a convex function E(f) min f = Σ a θ a (f(a)) + Σ (a,b) s ab min{d(f(a),f(b)), M}
62
Truncated Convex Models s ab is non-negative d(.) is a convex function Low-level vision applications NP hard E(f) min f = Σ a θ a (f(a)) + Σ (a,b) s ab min{d(f(a),f(b)), M} Truncated Linear Truncated Quadratic
63
Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a) {f(a)} U {M α (a)} Update f = f α Repeat until convergence Any label M α (a) instead of the same label l α
64
Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a) {f(a)} U {M α (a)} Update f = f α Repeat until convergence Any interval of labels M α (a) instead of a single label
65
Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a) {f(a)} U {α, α+1, …, α+L} Update f = f α Repeat until convergence Any interval of labels M α (a) instead of a single label
66
Length of the Interval Submodular problem Exact optimization in polynomial time Small interval implies bigger ratio of d max /d min
67
Length of the Interval Non-submodular problem
68
Length of the Interval Submodular problem Optimization of upper bound in polynomial time Big interval implies smaller ratio of d max /d min
69
Length of the Interval Truncated Linear Bound = 2 + max 2M, L LM L = √2M Bound = 2 + √2 Truncated Quadratic Bound = O(√M)L = √M
70
Conclusion Move Making LP Potts22 MetricO(log h) Truncated Linear 2 + √2 Truncated Quadratic O(√M)
71
Future Work Move-making and convex relaxations connection Better measures than multiplicative bounds Designing hybrid algorithms
72
Questions? http://cvc.centrale-ponts.fr/personnel/pawan
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.