Download presentation
Published byValentine Richards Modified over 9 years ago
1
Bell Work How do you think the periodic table is arranged and list for me ways in which you think the periodic table used. Or what can it be used for and why is it important?
2
Periodic Table Objective: How are elements arranged on the periodic table?
3
Periodic Table In 1869, Russian chemist Dmitri Mendeleev arranged the elements in order of increasing atomic mass. However, there were gaps in the table. In 1914, British scientist Henry Moseley found the number of protons —the atomic number. When the elements were arranged by atomic number, they fit the pattern in Mendeleev’s table..
4
Periodic Squares So the periodic table is arranged by increasing atomic number. Each Element is Identified by a Chemical Symbol. Each square on the periodic table includes an element’s name, chemical symbol, atomic number, and atomic mass. For most elements, the chemical symbol has one or two letters. The newest elements have temporary three-letter symbols. The 1st letter is always capitalized and the 2nd letter is always lower case.
5
Periodic Squares Please draw and label the following periodic square!
6
Arrangement of the P.T. Each horizontal row of elements is called a period. The chemical and physical properties of elements in a row follow a repeating pattern as you move across the period. Each vertical column of elements is called a group. Elements in the same group often have similar chemical and physical properties.
7
Understanding P.T. Elements are classified as metals, nonmetals, and metalloids, by their properties. The number of electrons in the outer energy level of an atom is one characteristic that helps determine which category an element belongs in. The zigzag line on the periodic table can help you recognize which elements belong in which category.
8
Parts of P.T. Zig-zag line
9
Metals Metals are found to the left of the zigzag line. Atoms of most metals have few electrons in their outer energy level. Most metals are shiny, ductile, malleable, and are good conductors of electric current and thermal energy.
10
Nonmetals Nonmetals are found to the right of the zigzag line. Atoms of most nonmetals have an almost complete set of electrons in their outer energy level. Nonmetals are not shiny, ductile, or malleable, and are poor conductors of electric current and thermal energy.
11
Metalloids Metalloids are the elements that border the zigzag line. Atoms of metalloids have about half of a complete set of electrons in their outer energy level. Metalloids have some properties of metals and some properties of nonmetals. Metalloids are also called semiconductors.
12
Objective EXIT TICKET: write on ½ sheet and answer then give to Ms.Jones on way out! What are the location on the periodic table of metals, nonmetals, and metalloids?
13
Objective On ½ sheet of paper answer the following question
List all the major groups of the periodic table by their names.
14
Groups of P.T. Group 1 - Alkali metals
Alkali metals are elements in Group 1 of the periodic table. Alkali metal properties: - group contains metals - 1 electron in the outer level - very reactive - softness, color of silver, shininess, low density
15
Group 2 - Alkaline-earth metals
Alkaline-earth metals are elements in Group 2. Alkaline-earth metal properties: - group contains metals - 2 electrons in the outer level - very reactive, but less reactive than alkali metals - color of silver, higher densities than alkali metals
16
Transition Metals Transition metals are in Groups 3–12.
Properties of Transition Metals vary widely but include: - groups contains metals - 1 or 2 electrons in the outer level - less reactive than alkaline-earth metals - shininess, good conductors of electric current and thermal energy
17
Transition Metals 3-12
18
Group 13 – Boron Aluminum is the most common element from Group 13.
Group 13 properties: - group contains 1 metalloid and 5 metals - 3 electrons in the outer level - reactive - solids at room temperature
19
Group 14 – Carbon Group 14 properties: - group contains 1 nonmetal, 2 metalloids, and 2 metals - 4 electrons in the outer level - reactivity varies among the elements - solids at room temperature
20
Group 15 – Nitrogen Group 15 properties: - group contains 2 nonmetals, 2 metalloids, and 2 metals - 5 electrons in the outer level - reactivity varies among the elements - solids at room temperature (except for nitrogen, which is a gas)
21
Group 16 – Oxygen Group 16 properties: - group contains 3 nonmetals, 1 metalloids, and 1 metal - 6 electrons in the outer level - reactive - solids at room temperature (except for oxygen, which is a gas)
22
Group 17 – Halogens Group 17 properties: - group contains nonmetals - 7 electrons in the outer level very reactive - poor conductors of electric current, never in uncombined form in nature
23
Group 18 – Noble Gas Group 18 properties: - group contains nonmetals - 8 electrons in the outer level (except helium, which has 2) - have a full outer shell - unreactive - colorless, odorless gases at room temperature
24
Hydrogen The properties of hydrogen do not match the properties of any single group, so hydrogen is set apart: - a nonmetal - 1 electron in the outer level - reactive - colorless, odorless gas at room temperature - low density
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.