Presentation is loading. Please wait.

Presentation is loading. Please wait.

Klaus Peters Ruhr-Universität Bochum FSU, Feb 21, 2003 at the High Energy Storage GSI.

Similar presentations


Presentation on theme: "Klaus Peters Ruhr-Universität Bochum FSU, Feb 21, 2003 at the High Energy Storage GSI."— Presentation transcript:

1 Klaus Peters Ruhr-Universität Bochum FSU, Feb 21, 2003 at the High Energy Storage Ring @ GSI

2 2 Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Where is Darmstadt ? GSI

3 3 Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) The GSI Future Facility Panda Existing GSI Facilities

4 4Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) History since 1996Discussion about GSI future International workshops, reviews, accelerator R&D May 1999Letter of Intend for an antiproton facility (40 authors) Studies for detector concept Jan. 2001Detector simulation with GEANT4 Nov. 2001Conceptual Design Report of an „International Accelerator Facility for Beams of Ions and Antiprotons” Nov. 2001Review by an international review committee of the „Deutscher Wissenschaftsrat“ April 2002International p-Workshop at GSI July 2002Positive Votum by the „Deutscher Wissenschaftsrat“ Feb. 5, 2003Positive Decision by the „bmb+f”

5 5Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Press Release 16/2003, http://www.bmbf.dehttp://www.bmbf.de 05.02.2003 Bulmahn gives green light for large-scale research equipment "We are securing an international top position for German basic research"...Basic research in the natural sciences has a long tradition in Germany. Its success is inextricably linked with the use of large-scale equipment at national and international research centres. "With the new concept, basic research in Germany will start from an excellent position when entering a new decade of successful work", Minister Bulmahn said. Together with European partners, the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt is to develop further its equipment in a phased approach and become a leading european physics centre. At least 25% of the costs amounting to €675 million are to be shouldered by foreign partners.

6 6Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Overview The GSI Future Project The Physics Program (Panda Experiment) Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei Hypernuclei Further options The Antiproton Facility (HESR) Detector Concepts for Panda Conclusions

7 7Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Nuclear Structure Physics Nuclear Matter Physics Plasma Physics Atomic Physics Physics with Antiprotons The GSI Future Project Nuclear Structure Physics Research with Rare Isotope Beams Nuclei far from Stability number of neutrons number of protons r - process rp - process solar burning

8 8Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Nuclear Structure Physics Nuclear Matter Physics Plasma Physics Atomic Physics Physics with Antiprotons The GSI Future Project Nuclear Structure Physics Nuclear Matter Physics Nucleus-Nucleus Collisions Compressed Baryonic Matter ,-,p - beams SIS 18 SIS 200 T [MeV] 300 LHC RHIC SPS

9 9Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) SIS 18 Ion Beam Heating Jupiter Sun Surface Magnetic Fusion solid state density Temperature [eV] Density [cm -3 ] Laser Heating PHELIX Ideal plasmas Strongly coupled plasmas Sun Core Inertial Cofinement Fusion Nuclear Structure Physics Nuclear Matter Physics Plasma Physics Atomic Physics Physics with Antiprotons The GSI Future Project Nuclear Structure Physics Nuclear Matter Physics Plasma Physics Ion and Laser Induced Plasmas High Energy Density in Matter

10 10Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Nuclear Structure Physics Nuclear Matter Physics Plasma Physics Atomic Physics Physics with Antiprotons The GSI Future Project Nuclear Structure Physics Nuclear Matter Physics Plasma Physics Atomic Physics From Fundamentals to Applications QED, Strong Fields, Ion-Matter Interactions

11 11Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Nuclear Structure Physics Nuclear Matter Physics Plasma Physics Atomic Physics Physics with Antiprotons The GSI Future Project Nuclear Structure Physics Nuclear Matter Physics Plasma Physics Atomic Physics Physics with Antiprotons Research with Antiprotons Hadron Spectroscopy and Hadronic Matter Effective Degrees of Freedom

12 12Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) QCD running coupling constant transition from perturbative to non-perturbative regime Q 2 [GeV 2 ]1010.10.05 perturbative QCDconstituent quark confinement mesons and baryons 00.10.31RnRn r [fm] Transition from the quark-gluon to the hadronic degrees of freedom perturbativestrong QCD

13 13Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) MASS Motivation Antiproton Project MASS Understand the generation of mass Higgs is only responsible for about 2% of proton mass ! How can we understand the difference ?

14 14Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Motivation Antiproton Project Is LatticeQCD (QCD itself) sufficient to explain masses? LatticeQCD uses chiral aspects to extrapolate to a=0! Do the two approaches really reflect the same theory?

15 15Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Fundamental Aspects of QCD QCD is confirmed to high accuracy at small distances At large distances, QCD is characterized by: Confinement Chiral symmetry breaking Challenge: Quantitative understanding of the relevant degrees of freedom in strongly interacting systems Experimental approach: Charm physics: Transition  chiral to heavy quark limits Proton-Antiproton: rich hadronic source Can we understand the proton in terms of QCD? Source of baryon number conservation? Baryon number a property of quarks or the hadron?

16 16Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Charmonium Physics Charmonium is the Positronium System of QCD Energies Splitting Widths Quark-Antiquark-Interaction Exclusive Decays Mixing of perturbative and non-pertubative Effects

17 17Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Charmonium Physics Open questions …  c ‘ (2 1 S 0 ) not established h 1c ( 1 P 1 ) unconfirmed Peculiar decays of (4040) Terra incognita for any 2P and D-States … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions

18 18Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) 35003520 MeV3510 CBall ev./2 MeV 100 E CM Charmonium Physics e + e - interactions: Only 1 -- states are formed Other states only by secondary decays (moderate mass resolution) pp reactions: All states directly formed (very good mass resolution) CBall E835 1000 E 835 ev./pb  c1 Existing experiments: no B-field, beam time beam momentum reproducibility

19 19Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) E CM Resonance Scan Measured Rate Beam Profile Resonance Cross Section small and well controlled beam momentum spread p/p is extremely important

20 20Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Charmonium Physics Expect 1-2 fb -1 (like CLEO-C) pp (>5.5 GeV/c) J/10 7 /d pp (>5.5 GeV/c)  c2 (J/10 5 /d pp (>5.5 GeV/c)  c ‘(10 4 /d| rec. ? Comparison to E835 Maximum energy 15 GeV/c instead of 9 GeV/c Luminosity 10x higher Detector with magnetic field p/p 10x better Dedicated machine with stable conditions

21 21Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Hadrons are very complicated Standard model meson only one leading term Other colour neutral configurations may mix Decoupling is possible only if states are narrow leading term vanishes

22 22Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Charmed Hybrids Gluonic excitations of the quark-antiquark-potential may lead to bound states LQCD: m H ~ 4.2-4.5 GeV Light charmed hybrids could be as narrow as  O(5-50 MeV) selection rules (from Fluxtube) # charmed final states (OZI-Rule)   important and r Breakup

23 23Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Fluxtube Meson Hybrid ~ Simplified Lattice Approach Flux (excited Gluon) carries angular momentum

24 24Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Charmed Hybrids Fluxtube-Model predicts DD** (+c.c.) decays ifm H <4290 MeV/c 2  H < 50 MeV/c 2 Some exotics can decay neither to DD nor to DD* (+c.c.) e.g.: J PC (H)=0 +- fluxtube allowed  c0 , c0 , c2 , c2 , c h 1, h 1c  fluxtube forbidden J/f 2,J/() S Small number of final states with small phase space CLEO BaBar and Belle would expect ~300 evts. each in 5 years  not competitive

25 25Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Proton-Antiproton @ Rest/Flight Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids Production all J PC available Formation only selected J PC

26 26Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Proton-Antiproton @ Rest/Flight Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids Momentum range for a survey p p ~15 GeV p p _ G M p M H p _ p M H p _ p p _ G p p _ H p p _ H Production all J PC available Formation only selected J PC

27 27Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Exotics in Proton-Antiproton Exotics are heavily produced in pp reactions High production yields for exotic mesons (or with a large fraction of it) f 0 (1500)  ~25 % in 3  f 0 (1500)  ~25 % in 2   1 (1400)  >10 % in      Interference with other well known (conventional) states is mandatory for the phase analysis Crystal Barrel

28 28Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Heavy Glueballs Light gg/ggg-systems are complicated to identify Exotic heavy glueballs m(0 +- ) = 4140 (50)(200) MeV m(2 +- ) = 4740 (70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e + e - Flavour-blindness predicts decays into charmed final states Same run period as hybrids In addition: scan m>2 GeV/c 2 Morningstar und Peardon, PRD60 (1999) 034509 Morningstar und Peardon, PRD56 (1997) 4043

29 29Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Double charm production Belle results on e + e - J/ ccJ/ X

30 30Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) 4-Quark Formation Proton-Antiproton contains already a 4-Quark-System Idea: Dilepton-Tag from Drell-Yan-Production Advantages Trigger less J PC -Ambiguities 1200 E./day @ 12 GeV 300 E./day @ 5-8 GeV antiproton-Beam (for L=10 32 cm -2 s -1 ) Bannikov, Gornuschkin, Kopeliovich, Krumshtein and Sapozhnikov, JINR E1-92-344 (1992)

31 31Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Accessible Hadrons

32 32Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms f*  = 0.78f  Collaboration Nava, GSI, Munich, Jülich, Tokyo, Niigata, RIKEN

33 33Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution Nucleus-Nucleus CollisionsProton-Proton Collisions KaoS Collaboration TU Darmstadt, Frankfurt, GSI Darmstadt, Marburg, Cracow, Rossendorf

34 34Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. DD 50 MeV D D+D+ vacuum nuclear medium  K 25 MeV 100 MeV K+K+ KK  

35 35Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) bare D + D - 10 -2 10 -1 1 10 10 2 10 3  (nb) 4567 Open Charm in the Nuclei The expected signal: strong enhancement of the D-meson cross section, relative D + D - yields, in the near/sub-threshold region. Complementary to heavy ion collisions D+D+ in-medium free masses T (GeV) D-D- T~0 (A) = ? pApA ApNApN ApNApN pApA

36 36Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Charmonium in the Nuclei Lowering of the D + D - mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width (1D)=2040 MeV (2S)=0,322,7 MeV Experiment: Dilepton-Channels Idea Study relative changes of yield and width of the charmonium states. 3 GeV/c 2 Mass 3.2 3.4 3.6 3.8 4 (1 3 D 1 ) (1 3 S 1 ) (2 3 S 1 )  c (1 1 S 0 ) (3 3 S 1 )  c2 (1 3 P 2 )  c1 (1 3 P 1 )  c1 (1 3 P 0 ) 3,74 3,64 3,54 vacuum 1010 2020

37 37Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) J/ Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP p

38 38Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) J/ Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP Reaction p + A  J/ + (A-1) Fermi-smeared cc-Production J/, ‘ or interference region selected by p-Momentum Longitudinal und transverse Fermi-distribution is measurable e+e+ ee J/ (e + e  ) pb p(pbar) GeV/c 0 200 100 3.5 4.5 4.0 5.0 FF J/

39 39Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) 3 GeV/c Hypernuclei 3rd dimension (strangeness) of the nuclear chart New Era: high resolution -spectroscopy Double-hypernuclei: very little data Baryon-baryon interactions: -N only short ranged (no 1 exchange due to isospin) - impossible in scattering reactions secondary target  - (dss) p(uud)   (uds)  (uds) Trigger -- K+K

40 40Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Inverted DVCS Deeply Virtual Compton Scattering (DVCS) Generalized Parton Distributions using the handbag-diagram dynamics of quarks and gluons in hadrons Measurements of the inverted process less stringent requirements on the detector resolution predictions for 2 real photon final states ~ 1000 E./month

41 41Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Proton-Formfactors at large Q 2 High Q 2  pert. QCD FF (dim. Scaling) should vary with Q 2 time-like remains factor 2 larger than space-like Both in pQCD asymptotically equal HESR s  25 GeV 2 /c 4 q 2 >0 q 2 <0

42 42Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) CP-Violation in the Charm Sector Small mixing in the charm sector compared to K 0 and B (S) 0 Interference of amplitudes may lead to CP-Violation Measure D 0 using D* Tag Measure D + /D — -asymmetries Also possible pp  p c + D 0 (fixed flavour)

43 43Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Further Experiments and Optional extensions Hypernuclear physics 3 rd dimension of nuclear chart Focus Double Hypernuclei Inverted DVCS Measure dynamics of quarks and gluons in a hadron Handbag diagram Proton Formfactors at large Q 2 s up to 25 GeV 2 /c 4 D (S) -Physics BR and decay dalitzplots w/ high statistics CP-Violation in the D-Sector also possible pp  p c + D 0

44 44Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Quark-Mixing Not all neutral mesons are C-Eigenstates (like the  0 ) but K 1 and K 2 are CP-Eigenstates

45 45Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) D-Mesons: Mixing and Indirect CP Violation „Wrong sign“ (WS) D 0 decays either produced via DCS or mixing and CFD mixing parameter y can be extracted from lifetime ratio y=  K /  KK -1 K  has no certain CP parity K + K - is a CP even mode Indirect CP violation occurs in the mixing if expected asymmetry is very small (~10 -5 ) only new physics can lead to asymmetries as large as 1%

46 46Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) D-Mesons: Direct CP violation Recently observed in K meson decays (NA48/kTeV) requires two coherent amplitudes with different weak phases and strong phases only SCS decays can be used where tree and one-loop penguin interfere expected asymmetry A CP ~ -2 ~ 10 -3 possible decay modes D 0 K + K -,   ,K S  0,  0  0,K S K S or D + K S  +

47 47Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) The Antiproton Facility

48 48Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) The Antiproton Facility Antiproton production similar to CERN, HESR = High Energy Storage Ring Production rate 10 7 /sec P beam = 1.5 - 15 GeV/c N stored = 5 x 10 10 p Gas-Jet Target High luminosity mode Luminosity = 2 x 10 32 cm -2 s -1 p/p ~ 10 -4 (stochastic cooling) High resolution mode p/p ~ 10 -5 (electron cooling < 8 GeV/c) Luminosity = 10 31 cm -2 s -1

49 49Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Proposed Detector (Overview) High Rates Total  ~ 55 mb Vertexing ( p,K S,,…) Charged particle ID (e ±, ±, ±,p,…) Magnetic tracking Elm. Calorimetry (, 0,) Forward capabilities (leading particles) Sophisticated Trigger(s)

50 50Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Vertexing: Micro Vertex Detector 7.2 mio. barrel pixels 50 x 300 μm 2 mio. forward pixels 100 x 150 μm beam pipe pellet/cluster pipe Readout: ASICs (ATLAS/CMS) 0.37% X 0 or pixel one side – readout other side (TESLA)

51 51Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Tracking: Straw Tube Tracker Number of double layers Skew angle of dbl layers 1 and 15 Skew angle of dbl layers 2-14 15 0 o 2 o -3 o Straw tube wall thickness Wire thickness Gas Length Diameter of tubes in double layers 1-5, 6-10, and 11-15 Number of straw tubes 26 mm 20 mm 90%He 10%C 4 H 10 150 cm 4 mm 6 mm 8 mm 8734 Transverse resolution s x,y Longitudinal resolution s z 150 mm 1 mm

52 52Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Tracking: Forward MDC 6 layers of sense wires in 3 double layers (y,u,v) not stretched radially (mass) realized at HADES high counting rates position resolution 70μm HADES@GSI

53 53Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) PID: DIRC (Cherenkov) less space than aero gel  costs of calorimeter no problems with field BaBar@SLAC

54 54Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) PID: Forward RICH Aerogel n=1.02 Multi pad gas Detector Mismatch photons  CsI photon conversion LHCb proximity focusing  mirrors

55 55Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Electromagnetic Calorimeter Detector materialPbWO 4 Photo sensorsAvalanche Photo Diodes Crystal size  35 x 35 x 150 mm 3 (i.e 1.5 x 1.5 R M 2 x 17 X 0 ) Energy resolution 1.54 % / E[GeV] + 0.3 % Time resolution   130 ps Total number of crystals7150

56 56Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Participating Institutes (with Representative in the Coordination Board) U Bochum U Bonn U & INFN Brescia U Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna I + II U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice LANL Los Alamos U Mainz TU München U Münster BINP Novosibirsk U Pavia U of Silesia U Torino Politechnico di Torino U & INFN Trieste U Tübingen U & TSL Uppsala ÖAdW Vienna SINS Warsaw 40 Institutes (32 Locations) from 9 Countries: Austria - Germany – Italy – Netherlands – Poland – Russia – Sweden – U.K. – U.S.

57 57Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Competition BES, BNL, CLEO-C, Dane, Hall-D, JHF TopicCompetitor Confinement Charmonium all cc states with high resolution CLEO-C only 1 –– states Gluonic Excitations charmed hybrids heavy glueballs CLEO-C light glueballs Hall-D light hybrids Nuclear Interactions D-mass shift J/ absorption (T~0) Dane K-mass shift Hypernuclei -spectroscopy of - and -hypernuclei BNL indirect evidence only JHF single HN Open Charm Physics Rare D-Decays CP-physics in Hadrons CLEO-C rare D-Decays CP-physics in D-Mesons,K-beams JHF rare K-Decays (?) neutrino physics

58 58Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Why Antiprotons ? high resolution spectroscopy with p-beams in formation experiments: E  E beam high yields of gluonic excitations in pp glueballs, hybrids event tagging by pair wise associated production, (particle, anti-particle) e.g. pp large s at low momentum transfer important for in-medium "implantation" of hadrons: study of in-medium effects

59 59Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Realization/Cost Civil Construction~ 225 M€ Accelerator Components ~ 265 M€ Instrumentation and Major Detectors ~ 185 M€ (HESR Detector ~ 32 M€) ~ 675 M€ Year 2005major money flow Year 2009 commissioning Year 2010+ regular data taking 20032005200720092011

60 60Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) Summary & Outlook Investigation of charmed hadrons and their interaction with matter is a mandatory task for the next decade The antiproton facility HESR @ GSI addresses many important questions A high performance storage ring and detector are envisaged to utilize a luminosity of L=2 x 10 32 cm -2 s -1

61 61Feb 18, 2003Klaus Peters, U Bochum, Proton-Antiproton @ Darmstadt (GSI Future Project) More Information http://www-new.gsi.de/zukunftsprojekt/index_e.html http://www.gsi.de/GSI-Future/cdr/ http://www-aix.gsi.de/GSI-Future/project/pdf/proposal_e.pdf


Download ppt "Klaus Peters Ruhr-Universität Bochum FSU, Feb 21, 2003 at the High Energy Storage GSI."

Similar presentations


Ads by Google