Presentation is loading. Please wait.

Presentation is loading. Please wait.

Straight Line (11) Composite Functions (12) Higher Past Papers by Topic 2000 - 2012 Higher Past Papers by Topic 2000 - 2012 www.mathsrevision.com Differentiation.

Similar presentations


Presentation on theme: "Straight Line (11) Composite Functions (12) Higher Past Papers by Topic 2000 - 2012 Higher Past Papers by Topic 2000 - 2012 www.mathsrevision.com Differentiation."— Presentation transcript:

1 Straight Line (11) Composite Functions (12) Higher Past Papers by Topic 2000 - 2012 Higher Past Papers by Topic 2000 - 2012 www.mathsrevision.com Differentiation (22) Recurrence Relations (6) Polynomials (12) Integration (16) Trigonometry (18) The Circle (15) Vectors (15) Logs & Exponential (16) Wave Function (12) Summary of Higher Wednesday, 05 August 2015Wednesday, 05 August 2015Wednesday, 05 August 2015Wednesday, 05 August 2015 Created by Mr. Lafferty Maths Dept.

2 Straight Line Composite Functions Higher Mindmaps by Topic Higher Mindmaps by Topic www.mathsrevision.com Differentiation Recurrence Relations Polynomials Integration Trigonometry The Circle Vectors Logs & Exponential Wave Function Wednesday, 05 August 2015Wednesday, 05 August 2015Wednesday, 05 August 2015Wednesday, 05 August 2015Created by Mr. Lafferty Maths Dept. Main Menu

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80 Land

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108 24 cm 30 cm

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306 2 3

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341 Straight Line y = mx + c m = gradient c = y intercept (0,c) m = tan θ θ Possible values for gradient m > 0 m < 0 m = 0 m = undefined Distance between 2 points For Perpendicular lines the following is true. m 1.m 2 = -1 Parallel lines have same gradient Form for finding line equation y – b = m(x - a) (a,b) = point on line Terminology Median – midpoint Bisector – midpoint Perpendicular – Right Angled Altitude – right angled m 1.m 2 = -1 Mindmaps

342 flip in x-axis flip in y-axis f(x) - + + - Graphs & Functions y = -f(x) y = f(-x) y = f(x) ± k y = f(kx) Move vertically up or downs depending on k Stretch or compress vertically depending on k y = kf(x) Stretch or compress horizontally depending on k f(x) y = f(x ± k) Move horizontally left or right depending on k Remember we can combine these together !! Mindmaps

343 Composite Functions Similar to composite Area A complex function made up of 2 or more simpler functions =+ f(x) = x 2 - 4 g(x) = 1 x x DomainRange y = f(x) 1 y 1 x 2 - 4 Restriction x 2 - 4 ≠ 0 (x – 2)(x + 2) ≠ 0 x ≠ 2x ≠ -2 But y = f(x) is x 2 - 4 g(f(x)) g(f(x)) = f(x) = x 2 - 4 g(x) = 1 x x DomainRange y = g(x) f(g(x)) y 2 - 4 Restriction x 2 ≠ 0 But y = g(x) is f(g(x)) = 1 x 1 x 2 - 4 Rearranging 1 x2x2 Mindmaps

344 Adding Basics before Differentiation / Integration Working with fractions Indices Surds Subtracting Multiplication Division Format for Differentiation / Integration Mindmaps

345 Differentiation of Polynomials f(x) = ax n then f’x) = anx n-1 Derivative = gradient = rate of change Graphs f’(x)=0 f’(x)=0 Stationary Pts Max. / Mini Pts Inflection Pt Nature Table 25 + 0 - x f’(x) Max Gradient at a point Equation of tangent line Straight Line Theory Leibniz Notation Mindmaps

346 Differentiations Polynomials Stationary Pts Mini / Max Pts Inflection Pts Rate of change of a function. Harder functions Use Chain Rule Meaning Graphs Rules of Indices Gradient at a point. Tangent equation Straight line Theory Factorisation Real life Trig Mindmaps

347 Polynomials Functions of the type f(x) = 3x 4 + 2x 3 + 2x +x + 5 b 2 -4ac > 0 Real and distinct roots Degree of a polynomial = highest power Discriminant of a quadratic is b 2 -4ac Completing the square f(x) = a(x + b) 2 + c If finding coefficients Sim. Equations b 2 -4ac = 0 Equal roots b 2 -4ac < 0 No real roots Tangency 1 4 5 2-2 -2-4-2 2101 (x+2) is a factor since no remainder Easy to graph functions & graphs f(x) =2x 2 + 4x + 3 f(x) =2(x + 1) 2 - 2 + 3 f(x) =2(x + 1) 2 + 1 Factor Theorem x = a is a factor of f(x) if f(a) = 0 Mindmaps

348 Recurrence Relations next number depends on the previous number a > 1 then growth a < 1 then decay Limit exists when | a | < 1 + b = increase - b = decrease Given three value in a sequence e.g. U 10, U 11, U 12 we can work out recurrence relation U n+1 = a U n + b | a | < 1 | a | > 1 a = sets limit b = moves limit U n = no effect on limit Limit L is equal to (1 - a) L = b U 11 = a U 10 + b U 12 = a U 11 + b Use Sim. Equations Mindmaps

349 g(x) Integration of Polynomials IF f’(x) = ax n Then I = f(x) = Integration is the process of finding the AREA under a curve and the x-axis Area between 2 curves Finding where curve and line intersect f(x)=g(x) gives the limits a and b Remember to work out separately the area above and below the x-axis. Remember to change sign to + if area is below axis. f(x) A= ∫ f(x) - g(x) dx b a

350 Special case Mindmaps

351 Trig Formulae and Trig equations Addition Formulae sin(A ± B) = sinAcosB cosAsinB cos(A ± B) = cosAcosB sinAsinB Double Angle Formulae sin2A = 2sinAcosA cos2A = 2cos 2 A - 1 = 1 - 2sin 2 A = cos 2 A – sin 2 A 3cos 2 x – 5cosx – 2 = 0 Let p = cosx 3p 2 – 5p - 2 = 0 (3p + 1)(p -2) = 0 p = cosx = 1/3 cosx = 2 x = no sol n x = cos -1 ( 1/3) x = 109.5 o and 250.5 o C A S T 0o0o 180 o 270 o 90 o xoxo 44 2 The exact value of sinx sinx = 2sin(x/2)cos(x/2) sinx = 2 (¼ + √(4 2 - 1 2 ) ) sinx = ½ + 2√15) Mindmaps

352 Trigonometry sin, cos, tan Basic Strategy for Solving Trig Equations Basic Graphs 360 o 1 0 1 0 360 o 1 0 180 o 90 o sin x cos x Exact Value Table 1.Rearrange into sin = 2.Find solution in Basic Quads 3.Remember Multiple solutions Amplitude Period Amplitude Period Complex Graph 90 o 2 1 0 180 o 270 o 360 o 3 y = 2sin(4x + 45 o ) + 1 Max. Value =2+1= 3 Mini. Value = -2+1 -1 Period = 360 ÷4 = 90 o Amplitude = 2 degreesradians ÷180 then X π ÷ π÷ π then x 180 C A S T 0o0o 180 o 270 o 90 o Period tan x Amplitude Period Mindmaps

353 P Q B A Vector Theory Magnitude & Direction Vectors are equal if they have the same magnitude & direction a Notation Component form Unit vector form Basic properties same for subtraction Scalar product Magnitude scalar product 2 vectors perpendicular if Component form Addition

354 B Vector Theory Magnitude & Direction Points A, B and C are said to be Collinear if B is a point in common. C A Section formula properties n m a c b O A B C Angle between two vectors θ a b Tail to tail Mindmaps

355 y x y x (1,0) (a,1) (0,1) Logs & Exponentials Basic log rules y = ab x Can be transformed into a graph of the form y = log a x log A + log B = log AB log A - log B = log B A log a 1 = 0 log a a = 1 log (A) n = n log A Basic log graph Basic exponential graph (1,a) y = a x a 0 = 1 a 1 = a log y = x log b + log a C = log am = log b (0,C) log y x y = ax b Can be transformed into a graph of the form log y = b log x + log a C = log am = b (0,C) log y log x To undo log take exponential To undo exponential take log Y = bX + CY = (log b) X + C Y = mX + CY = mX + C Mindmaps

356 Wave Function transforms f(x)= a sinx + b cosx into the form f(x) = a sinx + b cosx compare to required trigonometric identity Process example a and b values decide which quadrant OR f(x) = k sin(x + β) = k sinx cos β + k cosx sin β Compare coefficients a = k cos β b = k sin β Square and add then square root gives Divide and inverse tan gives Related topic Solving trig equations Write out required form Mindmaps


Download ppt "Straight Line (11) Composite Functions (12) Higher Past Papers by Topic 2000 - 2012 Higher Past Papers by Topic 2000 - 2012 www.mathsrevision.com Differentiation."

Similar presentations


Ads by Google