Download presentation
Presentation is loading. Please wait.
Published byAubrie Higgins Modified over 9 years ago
1
University of Illinois at Urbana-Champaign National Center for Supercomputing Applications An Integrated Environmental Observatory Cyberenvironment Barbara Minsker Director, Environmental Engineering, Science, & Hydrology Group, National Center for Supercomputing Applications; Principal Investigator and co-Director, CLEANER Project Office; Associate Professor, Dept of Civil & Environ. Engineering; University of Illinois, Urbana, IL, USA November 16, 2006
2
National Center for Supercomputing Applications Environmental Cyberinfrastructure Demonstration (ECID) Project NSF Office of Cyberinfrastructure is funding NCSA and SDSC to: –Work with leading edge communities to develop cyberinfrastructure to support science and engineering –Incorporate successful prototypes into a persistent cyberinfrastructure –NCSA’s primary focus: Cyberenvironments As part of this effort, the ECID project, led by Jim Myers & Barbara Minsker, is working with the WATERS community and CUAHSI Hydrologic Information System (HIS) project to create a prototype cyberenvironment for environmental observatories –Driven by requirements gathering and close community collaborations
3
National Center for Supercomputing Applications Requirements Gathering Interviews at conferences and meetings (Tom Finholt and staff, U. of Michigan) Usability studies (CET, Wentling group) Community survey (Finholt group) –AEESP and CUAHSI surveyed in 2006 as proxies for environmental engineering and hydrology communities –313 responses out of 600 surveys mailed (52.2% response rate) –Key findings are driving ECID cyberenvironment development
4
National Center for Supercomputing Applications What is the single most important obstacle to using data from different sources? 55% concerned about insufficient credit for shared data N=278 Nonstandard/ inconsistent units/formats Metadata problems Other obstacles Shows a need for an integrated cyberenvironment with provenance.
5
National Center for Supercomputing Applications What three software packages do you use most frequently in your work? *Other: MS Word MS PowerPoint Statistics applications (e.g., Stata, R, S-Plus) SigmaPlot PHREEQC MathCAD FORTRAN compiler Mathematica GRASS GIS Groundwater models Modflow Majority are not using high- end computational tools.
6
National Center for Supercomputing Applications Factors influencing technology adoption Ease of use, good support, and new capabilities are essential.
7
National Center for Supercomputing Applications What are the three most compelling factors that would lead you to collaborate with another person in your field? Community seeks collaborations to gain different expertise.
8
National Center for Supercomputing Applications Environmental CI Architecture: Research Services Create Hypo- thesis Obtain Data Analyze Data &/or Assimilate into Model(s) Link &/or Run Analyses &/or Model(s) Discuss Results Publish Knowledge Services Data Services Workflows & Model Services Meta- Workflows Collaboration Services Digital Library Research Process Supporting Technology Integrated CI ECID Project Focus: Cyberenvironments HIS Project Focus
9
National Center for Supercomputing Applications Cyberenvironments Couple traditional desktop computing environments coupled with the resources and capabilities of a national cyberinfrastructure Provide unprecedented ability to access, integrate, automate, and manage complex, collaborative projects across disciplinary and geographical boundaries. ECID is demonstrating how cyberenvironments can: –Support observatory sensor and event management, workflow and scientific analyses, and knowledge networking, including provenance information to track data from creation to publication. –Provide collaborative environments where scientists, educators, and practitioners can acquire, share, and discuss data and information.
10
National Center for Supercomputing Applications ECID CyberEnvironment Components CyberCollaboratory: Collaborative Portal CyberIntegrator: Exploratory Workflow Integration CI:KNOW: Network Browser/ Recommender Tupelo Metadata Services Community Event Management/Processing SSO Single Sign-On Security (coming) CUAHSI HIS Data Services
11
National Center for Supercomputing Applications CyberCollaboratory The CyberCollaboratory is a web portal to allow sharing of information and ideas across the community. Currently being used by CLEANER Project Office To check out the public view of CyberCollaboratory, create an account at http://cleaner.ncsa.uiuc.edu/cybercollab
12
National Center for Supercomputing Applications CyberIntegrator Studying complex environmental systems requires: –Coupling analyses and models –Real-time, automated updating of analyses and modeling with diverse tools CyberIntegrator is a prototype technology to support exploratory modeling and analysis of complex systems. Integrates the following tools to date: –Excel –IM2Learn image processing and mining tools, including ArcGIS image loading –D2K data mining –Java codes, including event management tools Additional tools will be added, based on high priority needs of beta users. Some options: ArcGIS, OpenMI model integration, Fortran codes, Matlab, Kepler, generic tools for running executables and Web services
13
National Center for Supercomputing Applications CyberIntegrator Architecture Example of CyberIntegrator Use: Carrie Gibson created a fecal coliform prediction model in ArcGIS using Model Builder that predicts annual average concentrations. Ernest To rewrote the model as a macro in Excel to perform Monte Carlo simulation to predict median and 90th percentile values. CyberIntegrator’s goal: Reduce manual labor in linking these tools, visualizing the results, and updating in real time.
14
National Center for Supercomputing Applications Real-Time Simulation of Copano Bay TMDL with CyberIntegrator CyberIntegrator Streamflows to Distributions (Excel) USGS Daily Streamflows (web services) Fecal Coliform Concentrations Model (Excel) Load Shapefiles (Im2Learn) Shapefiles For Copano Bay call data Geo-reference and Visualize Results (Im2Learn) 1 234 Excel ExecutorIm2Learn Executor
15
National Center for Supercomputing Applications Sensor Anomaly Detection Scenario CC Bay Sensor Monitor Page CyberIntegrator Dashboard Sensor data Anomalies Listens for data events & creates event when anomaly discovered. Anomaly Detector 1 Anomaly Detector 2 Anomalies Sensor Data Shares workflow to server Event Manager CCBay Sensor Map User subscribes to anomaly detector workflows CI-KNOW Network CyberIntegrator loads recommended workflow. User adjusts parameters to CCBay Sensor. Sensor map shows nearby related sensors so user can check data. Anomaly detector is faulty. CI-KNOW recommends alternate anomaly detector from Chesapeake Bay observatory. Alerts user to anomaly detection, along with other events (logged-in users, new documents, etc.)
16
University of Illinois at Urbana-Champaign National Center for Supercomputing Applications Demonstrations…
17
National Center for Supercomputing Applications Cyberenvironment Technologies Workflow Publication/ Retrieval Web Services Raw Data JMS JMS Broker (ActiveMQ 4.0.1) Anomaly Subscription JMS Data and Anomaly Subscriptions JMS CyberDashboard Desktop Application CyberCollaboratory CI-KNOW Recommender Network Web Service SOAP Workflow Reference URL CyberIntegrator Data Subscriptions JMS Anomaly Publication JMS Workflow Service CyberIntegrator Workflow SOAP Semantic Content Provenance Event Topics Workflow Templates User Subscriptions Tupelo ECID Managed Data/Metadata Sensor Page Reference URL Metadata Anomalies Data RDBMS
18
National Center for Supercomputing Applications ECID & WATERS Testbeds Two technologies in the Cyberenvironment are ready for beta testing: CyberCollaboratory and CyberIntegrator We invite WATERS testbed projects to become beta testers: –Use the beta software starting January 1 st. We will work with you to create CyberIntegrator executors for your tools (do it yourself with our open source code or we’ll do it) –Provide feedback to our developers on usability and functionality –Ongoing software modifications will be made in response to feedback To date, 4 projects agreed to participate in beta testing –3 WATERS testbeds: Corpus Christi Bay, Chesapeake Bay, Utah –UNESCO IHE researchers Interested in joining the beta testing? –See Luigi Marini for more details, or e-mail him at lmarini@ncsa.uiuc.edu
19
National Center for Supercomputing Applications Conclusions The ECID Cyberenvironment demonstrates the benefits of end-to-end integration of cyberinfrastructure and desktop tools, including: –HIS-type data services –Workflow –Event management –Provenance and knowledge management, and –Collaboration for supporting environmental researchers, educators, and outreach partners (e.g., policy makers) This creates a powerful system for linking observatory operations with flexible, investigator-driven research in a community framework (i.e., the national network). –Workflow and knowledge management support testing hypotheses across observatories –Provenance supports QA/QC and rewards for community contributions in an automated fashion.
20
National Center for Supercomputing Applications Acknowledgments Contributors: –NCSA ECID team (Peter Bajcsy, Noshir Contractor, Steve Downey, Joe Futrelle, Hank Green, Rob Kooper, Yong Liu, Luigi Marini, Jim Myers, Mary Pietrowicz, Tim Wentling, York Yao, Inna Zharnitsky) –Corpus Christi Bay Testbed team (PIs: Jim Bonner, Ben Hodges, David Maidment, Paul Montagna) Funding sources: –NSF grants BES-0414259, BES-0533513, and SCI- 0525308 –Office of Naval Research grant N00014-04-1-0437
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.