Download presentation
Presentation is loading. Please wait.
Published byHoward Peters Modified over 9 years ago
1
ENG2000: R.I. Hornsey Thermal: 1 ENG2000 Chapter 9 Thermal Properties of Materials
2
ENG2000: R.I. Hornsey Thermal: 2 Thermal properties of materials The problem of heat generation in ICs is becoming significant as there are more transistors per chip and increasing numbers of layers of metals and reduced dimensions The power (energy per unit time) delivered into a conductor is P = IV = I 2 R = V 2 /R and the resistance is given by R = L/A So longer tracks with a smaller area are more susceptible to heating The conductor heats up until the temperature is such that the heat lost per unit time balances the power supplied
3
ENG2000: R.I. Hornsey Thermal: 3 Convection, radiation, conduction convection conduction radiation
4
ENG2000: R.I. Hornsey Thermal: 4 Conduction is the flow of heat through a solid, analogous to electronic transport but with the driving force being T instead of V the constant of proportionality is the thermal conductivity rather than the electrical conductivity Radiation is the loss of energy by the emission of electromagnetic radiation in the infra-red wavelengths Convection is the transfer of heat away from a hot object because the gas next to the object heats up and becomes less dense hence it rises, setting up currents of gas flow
5
ENG2000: R.I. Hornsey Thermal: 5 Clearly, the more isolated the conductor is, the hotter it gets So consider a conductor in a chip:
6
ENG2000: R.I. Hornsey Thermal: 6 But how hot does the conductor get? How fast is heat transported away from the region of heating? How do we optimise the design to overcome these issues? Read on! We will first cover a few basics and then talk about heat capacity, thermal conductivity and their origins
7
ENG2000: R.I. Hornsey Thermal: 7 Thermodynamics Pretty much everything to do with heat and heat flow is covered by thermodynamics When two bodies of different temperatures are brought in contact heat, Q, flows from the hotter to the cooler Alternatively, a temperature increase can be achieved by doing work, W, on the system e.g. electrical heating, friction, … In either case, there is a change of energy of the “system” E = W + Q where Q is the heat received from the environment The first law of thermodynamics
8
ENG2000: R.I. Hornsey Thermal: 8 Energy, heat and work all have the same units Joules, J Joule performed experiments to demonstrate the equivalence of heat and mechanical work (1850) For our discussion of the intrinsic thermal properties of materials, we will often take W = 0 Note that heat transfer is like diffusion of a gas there is nothing in principle to stop heat or gas molecules from piling up in one place but it is statistically extremely unlikely look up Maxwell’s Demon!
9
ENG2000: R.I. Hornsey Thermal: 9 Heat capacity The heat capacity of a material is used to indicate that it takes different amount of heat to raise the temperature of different materials by a given amount e.g.4.18J to heat 1g of water by 1°C same energy heats 1g of copper by 11°C The exact value of the heat capacity depends on the conditions under which you measure it C’ p for constant pressure C’ v for constant volume At room temperature, the difference for solids is about 5%
10
ENG2000: R.I. Hornsey Thermal: 10 C’ V is directly related to the energy of the system It is easier to measure C’ p though, and the two C’s are related by where V = volume, = coefficient of thermal expansion and K = compressibility More frequently, we use the heat capacity per unit mass for generality
11
ENG2000: R.I. Hornsey Thermal: 11 Where c is a material characteristic but is temperature-dependent Now we can write we have assumed that W = 0 and the E can be supplied by e.g. electrical power
12
ENG2000: R.I. Hornsey Thermal: 12 Values c p (J/gK)C p (J/mol.K) Al0.89924.3 Fe0.46025.7 Ni0.45626.8 Cu0.38524.4 Pb0.13026.9 Ag0.23625.5 C0.90410.9 Water4.18475.3
13
ENG2000: R.I. Hornsey Thermal: 13 Molar heat capacity We can also express heat capacity per mole of molecules where M is the molar mass, N = # particles, N 0 = Avogadro’s number From the previous table, most of the metals have a C p ≈ C v of about 25 J/(Mol.K) this is known as the Dulong-Petit “law” (1819) The variation of C v with T is shown in the next slide
14
ENG2000: R.I. Hornsey Thermal: 14 25 J/mol.K CvCv T (K) 300K Pb Cu C
15
ENG2000: R.I. Hornsey Thermal: 15 The temperature at which c v reaches 96% of its final value is known as the Debye temperature Pb: 95K Cu: 340K C: 1850K At room temperatures, classical theory can explain heat capacities, but at low temperatures quantum theories are needed
16
ENG2000: R.I. Hornsey Thermal: 16 Thermal conductivity If we have a bar of material with a difference in temperature between the ends, heat will flow from the hotter to the cooler where J Q is in units of J/(m 2 s), and , the thermal conductivity, has units of W/(mK) This is Fourier’s Law (1822). The negative sign indicates the flow of heat from hot to cold This is exactly analogous to charge flow
17
ENG2000: R.I. Hornsey Thermal: 17 Thermal conductivity is also slightly temperature- dependent and usually decreases for increasing T Typical values for at room temperature are Cu: 4 x 10 2 W/(mK) Si: 1.5 x 10 2 W/(mK) glass: 8 x 10 -1 W/(mK) water: 6 x 10 -1 W/(mK) wood: 8 x 10 -2 W/(mK) An important fact to note for microelectronics is that the above values are for bulk materials while those for thin films can be significantly different largely because of the relative importance of the boundary (the same is true of electrical conductivity, heat capacity etc)
18
ENG2000: R.I. Hornsey Thermal: 18 Gases The behaviour of gases is of some relevance to us because we can treat the electrons in a metal as a gas We will discover later that, for metals, heat conduction and electrical conduction are intimately related An ideal gas follows PV = nRT where P = gas pressure, V = gas volume, n = N/N 0 also R = kN 0, where k = Boltzmann’s constant R = 8.314 J/(mol.K) We will use this expression in the calculation of the kinetic energy of gas molecules (or electrons in a metal)
19
ENG2000: R.I. Hornsey Thermal: 19 Kinetic energy of gases We consider a small volume of gas: If the particles move randomly, then 1/3 of them on average move in the x-direction or 1/6 on average move in the +x direction dx unit area +x
20
ENG2000: R.I. Hornsey Thermal: 20 The number of particles per unit time which hit the end of the volume (per unit volume) will be on average z = n v v/6 where n v is the number of particles per unit volume = N/V and v is the velocity When a particle bounces off the wall, they transfer a momentum of 2mv p 1 = mv p 2 = -mv p = p 2 - p 1 = -2mv
21
ENG2000: R.I. Hornsey Thermal: 21 The momentum transferred per unit time per unit area is thus We know that force is given by F = d(mv)/dt and that force per unit area is pressure, so But we also know that PV = nRT = nkN 0 T = NkT, so
22
ENG2000: R.I. Hornsey Thermal: 22 If we now put in E kin = mv 2 /2, we find Which, rearranged gives us the kinetic energy as E kin = (3/2)kT This is an average kinetic energy because we assumed an average number of particles moving in the +x direction at the start of the analysis
23
ENG2000: R.I. Hornsey Thermal: 23 Classical theory of heat capacity We will now use results from the previous sections to derive the Dulong - Petit law, C v = 25 J/(mol.K) We are comfortable with the idea that an atom vibrates about its ideal lattice position because of its thermal energy with an amplitude of about 10% of the equilibrium atomic spacing Such an atom can be thought of as being like a sphere supported by springs
24
ENG2000: R.I. Hornsey Thermal: 24 The atom acts like a simple harmonic oscillator which “stores” an amount of thermal energy E = kT this is really the definition of k In a 3-dimensional solid, the oscillator has energy, E = 3kT This the energy per atom. The total internal energy per mole is therefore E = 3N 0 kT
25
ENG2000: R.I. Hornsey Thermal: 25 From before, we know that C’ v = (dE total /dT) v and C v = C’ v N 0 /N, so we find Since N 0 = 6.02 x 10 23 (g.mol) -1 and k = 1.38 x 10 -23 J/K 3kN 0 = 24.9 J/(mol.K) which agrees very well with Dulong-Petit The only problem is that this predicts C v to be independent of T, which we saw is not the case
26
ENG2000: R.I. Hornsey Thermal: 26 Phonons Einstein (as usual) came up with the solution to this difficulty In 1903 he proposed that the energies of the “atomic oscillators” was quantized such quantized lattice oscillations are called phonons When we think of atoms vibrating due to their thermal energy, we assumed they moved independently However, because of bonding, the motions are connected leading to a wave behaviour
27
ENG2000: R.I. Hornsey Thermal: 27 There are four kinds of waves: Using wave-particle duality, we can say that these waves can also act like particles these are called phonons they can scatter etc. just like particles longitudinaltransverse optical acoustic
28
ENG2000: R.I. Hornsey Thermal: 28 Einstein proposed that, unlike electrons, the number of phonons increases with temperature or, conversely phonons are eliminated with decreasing temperature the energy of each phonon is constant For electrons, it is their energy that increases with temperature, not their number The average number of phonons at any temperature was found to obey a distribution the Bose-Einstein distribution So the average energy stored in phonons was calculated. It simplified to Dulong-Petit at higher temperatures but agreed with the experiments at lower temperatures
29
ENG2000: R.I. Hornsey Thermal: 29 Electrons We know that increasing the temperature also increases the K.E. of the electrons So how much of the heat capacity is contributed by the electrons? In fact, it turns out that electrons play a small part in the heat capacity Only those electrons within a kT of the highest occupied energy levels can gain extra thermal energy: E max E max - kT OK no empty state filled levels
30
ENG2000: R.I. Hornsey Thermal: 30 We won’t do the calculation, but it turns out that only a small fraction of the total number of electrons can gain thermal energy about 1% of C v is contributed by the electrons at room temperature The contributions from each mechanism can be summarized in the following graph: 25 J/mol.K CvCv T (K) 300K classical theory experimental Einstein electron component
31
ENG2000: R.I. Hornsey Thermal: 31 Heat conduction We know that heat flows from the hot to the cold, but what does the transferring? In a solid, only two things can move electrons and phonons Depending on the material involved, one or other species tends to dominate It was found that good electrical conductors tended also to be good thermal conductors But what about insulators?
32
ENG2000: R.I. Hornsey Thermal: 32 Electrons (again) The connection between electrical and thermal conductivities for metals was expressed in the Wiedeman - Franz Law in 1953 suggesting that electrons carry thermal energy as well as electrical charge Because of electrical neutrality, equal numbers of electrons move from hot to cold as the reverse but their thermal energies are different However, it is observed that electrical conductivity varies over ~25 orders of magnitude, while thermal varies over just 4 orders...
33
ENG2000: R.I. Hornsey Thermal: 33 Phonons (again) In electrical insulators, there are few free electrons, so the heat must be conducted in some other way i.e. lattice vibrations = phonons As we stated earlier, there is a major difference between heat conduction by electrons and by phonons for phonons, the number changes with the temperature, but the energy is quantised while for electrons, the number is fixed but the energy varies Both movements are due to diffusion of particle numbers for phonons, of particle energies for electrons
34
ENG2000: R.I. Hornsey Thermal: 34 So materials are divided into phonon conductors and electron conductors of heat: We will now derive the thermal conductivity using a classical argument To prove the Wiedeman-Franz Law, we need to treat both the heat capacity and the conductivity in quantum terms we won’t do that but we will quote the result 10 -2 10 -1 10 0 10 1 10 2 10 3 phonon conductors electron conductors sulphur wood rubber nylonwater NaCl SiO 2 FeGe Si Al Cu Ag [W/m.K]
35
ENG2000: R.I. Hornsey Thermal: 35 Thermal conductivity – classical derivation To do this, we consider a bar of material with a thermal gradient We calculate the flow of energy through a volume due to the temperature gradient and use this to calculate the number of “hot” electrons An equal number of “cold” electrons must flow the opposite way, so we can solve for [note: in the usual jargon, “hot” electrons are accelerated to a high drift velocity by a high electric field]
36
ENG2000: R.I. Hornsey Thermal: 36 Consider the following bar with a temperature gradient dT/dx: We are interested in a small volume of material, with a length 2 where is the mean free path between collisions with the lattice x1x1 x0x0 x2x2 x T T1T1 T0T0 T2T2 E1E1 E2E2 unit area
37
ENG2000: R.I. Hornsey Thermal: 37 The idea is that an electron must have undergone a collision in this space and hence will have the energy/temperature of this location To calculate the energy flowing per unit time per unit area from left to right (E1), we multiply the number of electrons crossing by the energy of one electron
38
ENG2000: R.I. Hornsey Thermal: 38 Now, we know that the same number of electrons must flow in the opposite direction to maintain charge neutrality but the energy per electron is lower Therefore, the thermal energy transferred per unit time per unit area is
39
ENG2000: R.I. Hornsey Thermal: 39 But we also know that, by definition, J Q = - (dT/dx) So we can write: This says that the thermal conductivity is larger if: there are more electrons they move faster (more v) they move easier (fewer collisions, larger )
40
ENG2000: R.I. Hornsey Thermal: 40 Wiedeman-Franz law Quantum mechanically, we could calculate the energy of electrons at the uppermost filled energy levels And we could multiply by the number of electrons there to get another expression for We could then compare this expression to that for the electrical conductivity And we would find this works quite well for metals but not for “phonon materials”
41
ENG2000: R.I. Hornsey Thermal: 41 Thermal expansion The majority of materials expand when their temperature is increased This is simply expressed as L/L 0 = T where L 0 is the original length and is the coefficient of (linear) thermal expansion Clearly, a material whose length is constrained becomes strained when the temperature is changed The expansion is a result of the bonding energy diagram we saw a long time ago … page ATOM 20
42
ENG2000: R.I. Hornsey Thermal: 42 Because the curve is not symmetric, the increased energy of the atoms leads to a change of average atomic spacing If the curve is more symmetric, the effect is reduced and the coefficient of thermal expansion is lower increasing thermal energy average inter-atomic radius increases atomic separation potential energy
43
ENG2000: R.I. Hornsey Thermal: 43 Values Material [°C -1 x10 -6 ] Al23.6 Cu17.0 Fe11.8 Ag19.7 W4.5 stainless steel16.0 glass9.0 polyethylene~150 nylon144
44
ENG2000: R.I. Hornsey Thermal: 44 Summary Not surprisingly, the thermal properties of materials are intimately connected with atomic bonding and electronic effects We found that energy is stored in ‘atomic oscillators’ classical treatments lead to an approximate value for the heat capacity a full treatment involves phonons Phonons are quantised units of lattice vibration effectively heat particles Thermal conductivity takes place either by electrons or phonons, depending on the material Thermal expansion is related to atomic bonding
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.