Download presentation
Presentation is loading. Please wait.
Published byGilbert Marshall Modified over 9 years ago
1
1 Sequencing and Sequence Assembly --overview of the genome sequenceing process Presented by NIE, Lan CSE497 Feb.24, 2004
2
2 Introduction Q: What is Sequence A: To sequence a DNA molecule is to obtain the string of bases that it contains. Also know as read Q: How to sequence A: Recall the Sanger Sequencing technology mentioned in Chapter 1
3
3 Introduction Cut DNA at each base:A,C,G,T Fragment ’ s migrate distance is inversely proportional to their size Sanger Sequencing TCGCGATAGCTGTGCTA Run gel and read off sequence
4
4 Introduction Limitation The size of DNA fragments that can be read in this way is about 700 bps Problem Most genomes are enormous (e.g 10 8 base pair in case of human).So it is impossible to be sequenced directly! This is called Large-Scale Sequencing
5
5 Introduction Solution Break the DNA into small fragments randomly Sequence the readable fragment directly Assemble the fragment together to reconstruct the original DNA Scaffolder gaps Solving a one-dimensional jigsaw puzzle with millions of pieces(without the box) !
6
6 1. Break 2. Sequence 3. Assemble 4. Scaffolder 5. Conclusion
7
7 Break DNA can be cutten into pieces through mechanical means
8
8 Issues in Break How? Coverage The whole fragments provide an 8X oversampling of the genome Random Libraries with pieces sizes of 2,4,6,10, 12 and 40 k bp were produced Clone Obtaining several copies of the original genome and fragments
9
9 1. Break 2. Sequence 3. Assemble 4. Scaffolder 5. Conclusion
10
10 Sequence clone Directed sequencing (GEL) GTCCAGCCT Q: can we read the fragment from both end?
11
11 1. Break 2. Sequence 3. Assemble 4. Scaffolder 5. Conclusion
12
12 3. Assemble A Simple Example ACCGT CGTGC TTAC Overlap: The suffix of a fragment is same as the prefix of another. Assemble: align multiple fragments into single continuous sequence based on fragment overlap --ACCGT ----CGTGC TTAC TTACCGTGC
13
13 3. Assemble fragments assemble target original contig1contig2 gap
14
14 A simple model The simplest, naive approximation of DNA assemble corresponds to Shortest Superstring Problem(SCS): Given a set of string s1,..., sn, find the shortest string s such that each si appears as a substring of s. --ACCGT ----CGTGC TTAC TTACCGTGC
15
15 (1) Overlap step Create an overlap graph in which every node is a fragment and edges indicate an overlap (2) Layout step Determine which overlaps will be used in the final assembly, find an optimal spanning forest on the overlap graph
16
16 Overlap step Finding overlap Compare each fragment with other fragments to find whether there ’ s overlap on its end part and another ’ s beginning part. We call ‘ a overlap b ’ when a ’ s suffix equal to b ’ s prefix
17
17 Overlap step Overlap graph Directed, weighted graph G(V,E,w) V: set of fragments E : set of directed edge indicates the overlap between two fragments. An edge means an overlap between a and b with weight w. this equal to suffix(a,w)=prefix(b,w)
18
18 Example w z x u s y W=AGTATTGGCAATC Z=AATCGATG U=ATGCAAACCT X=CCTTTTGG Y=TTGGCAATCA S=AATCAGG 4 3 3 9 4 5
19
19 Layout step Looking for shortest common superstring is the same as looking for path of maxium weight Using greedy algorithm to select a edge with the best weight at every step. The selected edge is checked by Rule. If this check is accepted, the edge is accepted, otherwise omit this edge Rule: for either node on this edge, indegree and outdegree <=1; Acyclic
20
20 At last the fragments merged together, from the point of graph, it is a forest of hamitonian paths(a path through the graph that contains each node at most once)., each path correspond to a contig
21
21 Example w z x u s y W=AGTATTGGCAATC Z=AATCGATG U=ATGCAAACCT X=CCTTTTGG Y=TTGGCAATCA S=AATCAGG 4 3 3 9 4 5 W->Y->S AGTATTGGCAATC TTGGCAATCA AATCAGG AGTATTGGCAATCAGG Z->U->X AATCGATG ATGCAAACCT CCTTTTGG AATCGATGCAAACCT TTTGG
22
22 Geedy Algorithm is neither optimal nor complete, and will introduce gap 2 2 3 GCC ATGC TGCAT Can ’ t correctly model the assembly problem due to complication in the real problem instance
23
23 Complication with Assemble Sequencing errors. Most sequencers have around 1% error in the best case. Unknown orientation. Could have sequenced either strand. Bias in the reads. Not all regions of the sequence will be covered equally. Repeats. There is much repetitive sequence, especially in human and higher plants
24
24 Sequenceing Errors Fragments contains3 kinds of errors: insert, deletion, substitution Possibility :Substitutions ( 0.5-2% ), insert and deletion occur roughly 10 times less frequently http://compbio.uchsc.edu/Hunter_lab/Hunter/bioi7711/lecture6.ppt
25
25 x:ACCGT Y:CGTGC Z:TTAC U:TACCGT Problems with the simple model - Errors A G 3 x y uz 3 5 2 x y uz --ACCGT ----CGTGC TTAC -TACCGT TTACCGTGC
26
26 Problems with the simple model - Errors Solution Allow for bounded number of mismatches between overlapping fragments ----- Approximate overlaps Criterion: minimum overlap length(40 bps), error rate(less than 6% mismatches ) How? Using semi-global alignment to find the best match between the suffix of one sequence and the prefix of another.
27
27 semi-global alignment Score system: 1 for matches, -1 for mismatches, -2 for gaps Initializing the first row and first column of zero, ignore gap in both extremities Algorithm is same as global comparision Search last column for higest score and obtain alignment by tracing back to start point ( overlap of x over y). overlap of y over x corresponds to the max in the last row 0000000000000 …… y 000000 x
28
28 000000 0 11 -2 0 020 01 -211 00-22 0 -2 0 0 0 -2 CGATGCCGATGC A C C G T Overlap: y->x CGATGC--- ----ACCGT Y: X: Overlap:x->y ACCG-T— --CGATGC
29
29 x:ACCGT Y:CGTGC Z:TTAC U:TACCGT Problems with the simple model - Errors A G 3 x y uz 3 5 2 --ACCGT ----CGTGC TTAC -TACCGT TTACCGTGC --ACCG-T ----CGATGC TT-C -TAGCGT TTACCGTGC Criterion 1.Score>-3 2. Mismatch<2 2 x y uz 0 -2 0
30
30 Problems with the simple model - Unkown orientation Unknowns Orientation: Fragments can be read from both of the DNA strands. Solution Try all possible combination CACGT ACGT ACTACG GTACT CACGT ACGT CGTAGT AGTAC CACGT -ACGT --CGTAGT -----AGTAC CACGTAGTACTGA z x y Z’ X’ Y’
31
31 Problems with the simple model - Repeat Repeats can be characterized by length, copy number & fidelity between copies – Human T-cell receptor: 5x of a 4kb gene w/ ~3% variation – ALUs. ~300bp w/5-15% variation, clustering to be 50-60% of many human sequence regions – microsatellites, 3-6bp with thousands of repeats in centromeric and telemeric regions, 1-2% variation. gepard.bioinformatik.uni-saarland.de/html/BioinformatikIIIWS0304-Dateien/ V3-Assembly.ppt
32
32 Problems with the simple model - Repeat2 Original One DX1BCX3X2A X1 3X A C B D Fragment X3 X2 X1 A C B D Assembler Rearrangment DX2BCX1X3A Consensus
33
33 Problems with the simple model - Repeat3 X1BCX2A Original one A X2 X1 BC Assembly XAC B Target one gap Contig 1Contig2 Overcollapsing ! Shortest string is not always the best!
34
34 Problems with the simple model -Lack of coverage Lack of coverage Not all regions of the sequence will be covered equally Target DNA Uncovered area Solution Do more sampling to increase the coverage level Using scaffolder technology
35
35 1. Break 2. Sequence 3. Assemble 4. Scaffolder 5. Conclusion
36
36 4. Scaffolder Scaffold Given a set of non-overlapping contigs, order and orient them to reconstruct the original DNA How? Is there any relationsip can be built between different contigs? XBCA X B’ C’ A
37
37 4. Scaffolder -Mate Pairs Mate pairs: The sequenced ends are facing towards each other The distance between the two fragments is known( insert size – fragment size) The mate pairs is extremly valuable during the scaffold step. Mate Pair
38
38 4. Scaffolder -Method A scaffold retrieve the original mate pairs spanning in different contigs Using the link information of the pairs( Distance, Orientation) to orients contigs and estimates the gap size, this is calles “walk”
39
39 4 Scaffolder -Example Contig 1Contig 2 gap
40
40 4 Scaffolder Graph Representation Nodes: contigs Directed edges: constraints on relative placement of contigs – relative order and relative orientation http://jbpc.mbl.edu/jbpc/GenomesMedia/10_14POP.PPT
41
41 1. Break 2. Sequence 3. Assemble 4. Scaffolder 5. Conclusion
42
42 5. Conclusion The whole genome sequencing process Break-> Sequence -> Assemble-> Scaffolder A Simple Model Using overlap graph to construct the shortest common string However, it can ’ t corrctly model the assembly problem
43
43 Conclusion- Repeat Repeat detection – pre-assembly: find fragments that belong to repeats statistically (most existing assemblers) repeat database (RepeatMasker) – during assembly: detect "tangles" indicative of repeats (Pevzner, Tang, Waterman 2001) – post-assembly: find repetitive regions and potential mis- assemblies. (Reputer, RepeatMasker) Repeat resolution – find DNA fragments belonging to the repeat – determine correct tiling across the repeat
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.