Download presentation
Presentation is loading. Please wait.
Published byEmmeline Park Modified over 9 years ago
2
Intermediate Algebra Chapter 8 Quadratic Equations
3
Willa Cather –U.S. novelist “Art, it seems to me, should simplify. That indeed, is very nearly the whole of the higher artistic process; finding what conventions of form and what detail one can do without and yet preserve the spirit of the whole – so that all one has suppressed and cut away is there to the reader’s consciousness as much as if it were in type on the page.
4
Intermediate Algebra 8.1 Special Methods
5
Def: Quadratic Function General Form a,b,c,are real numbers and a not equal 0
6
Solving Quadratic Equation #1 Factoring Use zero Factor Theorem Set = to 0 and factor Set each factor equal to zero Solve Check
7
Solving Quadratic Equation #2 Graphing Solve for y Graph and look for x intercepts Can not give exact answers Can not do complex roots.
8
Solving Quadratic Equations #3 Square Root Property For any real number c
9
Sample problem
10
Sample problem 2
11
Solve quadratics in the form
12
Procedure 1. Use LCD and remove fractions 2. Isolate the squared term 3. Use the square root property 4. Determine two roots 5. Simplify if needed
13
Sample problem 3
14
Sample problem 4
15
Dorothy Broude “Act as if it were impossible to fail.”
16
Intermediate Algebra 8.1 Gay Completing the Square
17
Completing the square informal Make one side of the equation a perfect square and the other side a constant. Then solve by methods previously used.
18
Procedure: Completing the Square 1. If necessary, divide so leading coefficient of squared variable is 1. 2. Write equation in form 3. Complete the square by adding the square of half of the linear coefficient to both sides. 4. Use square root property 5. Simplify
19
Sample Problem
20
Sample Problem complete the square 2
21
Sample problem complete the square #3
22
Objective: Solve quadratic equations using the technique of completing the square.
23
Mary Kay Ash “Aerodynamically, the bumble bee shouldn’t be able to fly, but the bumble bee doesn’t know it so it goes flying anyway.”
24
Intermediate Algebra 8.2 The Quadratic Formula
25
Objective of “A” students Derive the Quadratic Formula.
26
Quadratic Formula For all a,b, and c that are real numbers and a is not equal to zero
27
Sample problem quadratic formula #1
28
Sample problem quadratic formula #2
29
Sample problem quadratic formula #3
30
Pearl S. Buck “All things are possible until they are proved impossible and even the impossible may only be so, as of now.”
31
Methods for solving quadratic equations. 1. Factoring 2. Square Root Principle 3. Completing the Square 4. Quadratic Formula
32
Discriminant Negative – complex conjugates Zero – one rational solution (double root) Positive –Perfect square – 2 rational solutions –Not perfect square – 2 irrational solutions
33
Sum of Roots
34
Product of Roots
35
Calculator Programs ALGEBRA QUADRATIC QUADB ALG2 QUADRATIC
36
Harry Truman – American President “A pessimist is one who makes difficulties of his opportunities and an optimist is one who makes opportunities of his difficulties.”
37
Intermediate Algebra 8.4 Quadratic Inequalities
38
Sample Problem quadratic inequalities #1
39
Sample Problem quadric inequalities #2
40
Sample Problem quadratic inequalities #3
41
Sample Problem quadratic inequalities #4
42
Sample Problem quadratic inequalities #5
43
Intermediate Algebra 8.5-8.6 Quadratic Functions
44
Orison Swett Marden “All who have accomplished great things have had a great aim, have fixed their gaze on a goal which was high, one which sometimes seemed impossible.”
45
Vertex The point on a parabola that represents the absolute minimum or absolute maximum – otherwise known as the turning point. y coordinate determines the range. (x,y)
46
Axis of symmetry The vertical line that goes through the vertex of the parabola. Equation is x = constant
47
Objective Graph, determine domain, range, y intercept, x intercept
48
Parabola with vertex (h,k) Standard Form
49
Find Vertex x coordinate is y coordinate is
50
Graphing Quadratic 1. Determine if opens up or down 2. Determine vertex 3. Determine equation of axis of symmetry 4. Determine y intercept 5. Determine point symmetric to y intercept 6. Determine x intercepts 7. Graph
51
Sample Problems - graph
53
Roger Maris, New York Yankees Outfielder “You hit home runs not by chance but by preparation.”
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.