Presentation is loading. Please wait.

Presentation is loading. Please wait.

COE 405 Introduction to Digital Design Methodology

Similar presentations


Presentation on theme: "COE 405 Introduction to Digital Design Methodology"— Presentation transcript:

1 COE 405 Introduction to Digital Design Methodology
Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

2 Outline Welcome to COE 405 Digital System Design
Design Space and Evaluation Space Digital System Complexity Design Domains and Levels of Abstractions Synthesis Process Design Flow in Verilog Simulation Process

3 Welcome to COE 405 Catalog Description
Review of sequential circuits design and analysis, Data path and control unit design, Design with Hardware Description languages (HDL), Design with Field-Programmable Gate Arrays (FPGAs), Block interfacing. Prerequisite: COE 202 Logic Design Instructor Dr. Aiman H. El-Maleh. Room: 22/407-5 Phone: Office Hours

4 Course Objectives & Learning Ouctomes
Introduce students to the design methodologies of digital systems with special emphasis on FPGA implementations. Course Learning Outcomes Data Path and Control Unit design Digital systems modeling using hardware description languages (Verilog HDL) Simulation of digital systems Synthesis and FPGA implementation of digital systems

5 Text Book M. D. Ciletti, “Advanced Digital Design with the Verilog HDL,” (Prentice Hall), 2/e 2010.

6 Grading Policy Discussions 5% Assignments 15% Quizzes 10%
Midterm % (Sat., Nov. 9, 1:30 PM) Project % Final % Attendance will be taken regularly. Excuses for officially authorized absences must be presented no later than one week following resumption of class attendance. Late assignments will be accepted (upto 3 days) but you will be penalized 10% per each late day. A student caught cheating in any of the assignments will get 0 out of 15%. No makeup will be made for missing Quizzes or Exams.

7 Course Content Introduction to Digital Design Methodology: Review of combinational logic design. Review of Sequential circuit design, Mealy versus Moore Machines, timing constraints, State minimization, State assignment. Design of a digital system by partitioning it into a Data Path and Control unit: Design of DP and CU, Algorithmic State Machine (ASM) charts. Introduction to logic design with Verilog: structural models of combinational logic, logic system, design verification and test methodology, propagation delay, truth table models of combinational and sequential logic with Verilog.

8 Course Content Logic design with behavioral models of combinational and sequential logic: continuous assignment models, dataflow/RTL models, algorithmic based models. Synthesis of combinational and sequential logic: Introduction to synthesis, synthesis of combinational logic, synthesis of sequential logic, synthesis of three-state devices and bus interfaces, synthesis of explicit state machines, synthesis of implicit state machines, synthesis of loops. Design and synthesis of Datapath controllers. Block interfacing Field Programmable Gate Arrays (FPGAs): FPGA technologies, Verilog based design flows for FPGAs, design and synthesis with FPGAs.

9 Digital System Design Realization of a specification subject to the optimization of Area (Chip, PCB) Lower manufacturing cost Increase manufacturing yield Reduce packaging cost Performance Propagation delay (combinational circuits) Cycle time and latency (sequential circuits) Throughput (pipelined circuits) Power dissipation Testability Earlier detection of manufacturing defects lowers overall cost Design time (time-to-market) Cost reduction Be competitive

10 Digital System Design Cycle
Design Idea  System Specification Behavioral (Functional) Design Pseudo Code, Flow Charts Architecture Design Bus & Register Structure Logic Design Netlist (Gate & Wire Lists) Circuit Design Transistor List Physical Design VLSI / PCB Layout Fabrication & Packaging

11 Architecture Design Data Path Unit Control Unit

12 Architecture Design Example
Problem: It is required to design a circuit to add two 8-bit numbers. The design must be as economical as possible in terms of hardware. 8-bit Addition Possible Solutions: There are numerous ways to design the above circuit, some of which are listed below. Use an 8-bit ripple-carry adder Use an 8-bit carry look-ahead adder. Use two 4-bit carry look-ahead adders and ripple the carry between stages. Use a 1-bit adder and perform the addition serially in 8 clock cycles.

13 Observations Design involves trade-offs between
Cost Performance Testability Power dissipation Fault tolerance Ease of design Ease of making changes to the design. Serial is cheap but slow, parallel fastest in terms of performance but most costly. The different ways we can think of building an 8-bit adder constitutes what is known as design space (at a particular level of abstraction). Each method of implementation is called a point in the design space.

14 Design Space and Evaluation Space
Design space: All feasible implementations of a circuit. Each design point has values for objective evaluation functions e.g. area. The multidimensional space spanned by the different objectives is called design evaluation space.

15 Optimization Trade-Off in Combinational Circuits

16 Combinational Circuit Design Space Example
Implement f = p q r s with 2-input or 3-input AND gates. Area and delay proportional to number of inputs.

17 Digital System Complexity
Moore’s Law: Number of transistors that can be packed on a chip doubles every 18 months while the price stays the same.

18 How to Deal with Design Complexity?
Hierarchy: structure of a design at different levels of description. Abstraction: hiding the lower level details. Design Hierarchy: Design subsystems for simple functions Compose subsystems to form the system Treating subcircuits as “black box” components Verify independently, then verify the composition Top-down/bottom-up design

19 Design Hierarchy Top Down Bottom UP

20 Abstractions An Abstraction is a simplified model of some Entity which hides certain amount of the Internal details of this Entity Lower Level abstractions give more details of the modeled Entity. Several levels of abstractions (details) are commonly used: System Level Chip Level Register Level Gate Level Circuit (Transistor) Level Layout (Geometric) Level More Details (Less Abstract)

21 Design Domains & Levels of Abstraction
Designs can be expressed / viewed in one of three possible domains Behavioral Domain (Behavioral View ) Structural/Component Domain (Structural View ) Physical Domain (Physical View ) A design modeled in a given domain can be represented at several levels of abstraction (Details).

22 Three Abstraction Levels of Circuit Representation
Architectural level Operations implemented by resources. Logic level Logic functions implemented by gates. Geometrical level Devices are geometrical objects.

23 Levels of Abstractions & Corresponding Views

24 Design Methods Full custom Semi-custom Maximal freedom
High performance blocks Slow Semi-custom Gate Arrays Mask Programmable (MPGAs) Field Programmable (FPGAs)) Standard Cells Silicon Compilers & Parametrizable Modules (adder, multiplier, memories)

25 Design vs. Synthesis Synthesis
Process of transforming H/W from one level of abstraction to a lower one. Synthesis may occur at many different levels of abstraction Behavioral or High-level synthesis Logic synthesis Layout synthesis Design A Sequence of synthesis steps down to a level of abstraction which is manufacturable.

26 Synthesis Process

27 Circuit Synthesis Architectural-level synthesis Logic-level synthesis
Determine the macroscopic structure Interconnection of major building blocks. Logic-level synthesis Determine the microscopic structure Interconnection of logic gates. Geometrical-level synthesis (Physical design) Placement and routing. Determine positions and connections.

28 Circuit Synthesis We usually design using register-transfer-level (RTL) Verilog Higher level of abstraction than gates Synthesis tool translates to a circuit of gates that performs the same function Specify to the tool the target implementation fabric constraints on timing, area, etc. Post-synthesis verification synthesized circuit meets constraints

29 Physical Implementation
Implementation fabrics Application-specific ICs (ASICs) Field-programmable gate arrays (FPGAs) Floor-planning: arranging the subsystems Placement: arranging the gates within subsystems Routing: joining the gates with wires Physical verification physical circuit still meets constraints use better estimates of delays

30 Hardware Description Languages
HDLs are used to describe the hardware for the purpose of modeling, simulation, testing, design, and documentation. Modeling: behavior, flow of data, structure Simulation: verification and test Design: synthesis Two widely-used HDLs today VHDL: VHSIC (Very High Speed Integrated Circuit ) Hardware Description Language (IEEE standard) Verilog (from Cadence, now IEEE standard)

31 Design Automation & CAD Tools
Design Entry (Description) Tools Schematic Capture Hardware Description Language (HDL) Simulation (Design Verification) Tools Simulators (Logic level, Transistor Level, High Level Language “HLL”) Synthesis Tools Formal Verification Tools Design for Testability Tools Test Vector Generation Tools

32 Design Flow in Verilog Define the design requirements
Describe the design in Verilog Top-down, hierarchical design approach Code optimized for synthesis or simulation Simulate the Verilog source code Early problem detection before synthesis Synthesize, optimize, and fit (place and route) the design for a device Synthesize to equations and/or netlist Optimize equations and logic blocks subject to constraints Fit into the components blocks of a given device Simulate the post-layout design model Check final functionality and worst-case timing Program the device (if PLD) or send data to ASIC vendor

33 Simulation Process


Download ppt "COE 405 Introduction to Digital Design Methodology"

Similar presentations


Ads by Google