Presentation is loading. Please wait.

Presentation is loading. Please wait.

Www.ccac.ca.  This training module is relevant to all animal users working with genetically-engineered (GE) farm animals in research, teaching or testing.

Similar presentations


Presentation on theme: "Www.ccac.ca.  This training module is relevant to all animal users working with genetically-engineered (GE) farm animals in research, teaching or testing."— Presentation transcript:

1 www.ccac.ca

2  This training module is relevant to all animal users working with genetically-engineered (GE) farm animals in research, teaching or testing.  This module covers the following GE farm animals: dairy and beef cattle dairy and beef cattle sheep sheep goats goats swine swine poultry poultry horses horses farmed wildlife farmed wildlife 2 Photo courtesy of Animal Resources Centre, University of Saskatchewan

3  Introduce the issues related to the impacts of genetic engineering on farm animals  Provide an appreciation for the special care requirements of GE farm animals  Provide investigators with references and resources for the ethical care and use of GE farm animals in science 3 Basic principles of farm animal welfare, fundamental needs, acquisition, routine handling and specialized procedures and termination of scientific use are covered in the CCAC training module on: the ethical use and care of farm animals in science (2010)

4  Overview of GE farm animals  Welfare issues  Regulations  Special considerations for potential alterations in care and nutrition 4

5  GE animals have a random or targeted genetic change due to deliberate human technological intervention  Special considerations: unexpected welfare impacts unexpected welfare impacts ethical concerns ethical concerns risk to humans, environment, etc. risk to humans, environment, etc. See the CCAC guidelines on: genetically-engineered animals used in science (in prep.) for further information Pronuclear microinjection of embryos Photo courtesy of Dr. C. Forsberg 5

6  Many potential issues may arise from genetic engineering; a few examples: high stillborn rates high stillborn rates low short-term survival rates low short-term survival rates chronic long-term health issues chronic long-term health issues developmental issues developmental issues physiological abnormalities physiological abnormalities 6 Investigators should be aware that in addition to the intended effects of genetic engineering (e.g., deliberate production of diseases or gene function abnormalities), unintended effects are also likely Ultrasound scanning

7  Additional regulations for GE animals, as well as their progeny and products (e.g., “new substances”, “novel feeds”)  Environmental release and indirect human health impacts of “new substances” regulated by Environment Canada and Health Canada under the Canadian Environmental Protection Act, 1999 (CEPA)  Animal Feed Division of Canadian Food Inspection Agency requires safety assessment of “novel feeds”: livestock livestock humans (worker/bystander exposure and consumption of products) humans (worker/bystander exposure and consumption of products) environment environment 7

8  Records outlining the specifics of any genetic modification are necessary and: facilitate accurate follow-up care for health and welfare facilitate accurate follow-up care for health and welfare should be in accordance with regulatory agency and institutional requirements should be in accordance with regulatory agency and institutional requirements 8  Two separate forms of identification should be used for GE farm animals: permanent (e.g., microchip or tattoo) permanent (e.g., microchip or tattoo) easy to identify and read (e.g., ear tag) easy to identify and read (e.g., ear tag)

9  In addition to following species-specific guidelines, special consideration should be given to: biosecurity measures to prevent accidental release of genetically-engineered farm animals biosecurity measures to prevent accidental release of genetically-engineered farm animals ○ (e.g., transporting such animals separately from conventional farm animals) 9 physiological impact of any genetic modifications physiological impact of any genetic modifications ○ (e.g., immunosuppression) Photo courtesy of Agriculture and Agri-Food Canada

10  At least two physical barriers should be used when confining GE farm animals  Maintain secure confinement limit access to authorized personnel only limit access to authorized personnel only screen and log all visitors and vehicles screen and log all visitors and vehicles adhere to any additional regulations adhere to any additional regulations 10

11  Providing care tailored to the special needs of GE farm animals is important for both good animal welfare and for achieving scientific goals higher levels of monitoring required to identify unanticipated welfare concerns higher levels of monitoring required to identify unanticipated welfare concerns  Care and nutrition of GE farm animals will be heavily dependent on the: impact of specific genetic engineering methods impact of specific genetic engineering methods ○ (e.g., a transgene introduced may alter physiology) intended end use of animals or their products intended end use of animals or their products 11

12 12 Physiological pathways altered by genetic modification Changes in digestion and absorption and utilization of nutrients Potential deficiencies and toxicities e.g., animals kept indoors may require Vitamin D supplementation Potential deficiencies and toxicities e.g., animals kept indoors may require Vitamin D supplementation

13 13 Photo courtesy of UBC Animal Welfare Program  Considering the intended end use of GE farm animals will help dictate any necessary changes to feeding regime  Alteration to conventional feeding practices (e.g., pesticide- free feed to animals producing pharmaceuticals in their milk)  Offspring of animals used for producing products within their milk will need adapted feeding programs

14  Systematic welfare assessment helps to identify potential effects of genetic engineering on physiological and behavioural states  Potential indicators of issues: changes in behaviour changes in behaviour abnormal physical changes abnormal physical changes Three grower hemizygous Enviropigs Photo courtesy of Dr. C. Forsberg

15  Careful observation helps mitigate adverse welfare consequences by: revealing special needs and/or problems stemming from specific genetic engineering methods revealing special needs and/or problems stemming from specific genetic engineering methods developing special care methods for animals in the same applications developing special care methods for animals in the same applications determining relevant endpoints determining relevant endpoints See the CCAC guidelines on: choosing an appropriate endpoint in experiments using animals for research, teaching and testing (1998) and the CCAC training module on: pain, distress and endpoints (2010) for further information regarding endpoints

16  Genetic engineering may have adverse effects on farm animals  Special consideration should be given to: regulations, identification and transportation regulations, identification and transportation meeting special care and nutrition needs of the GE farm animals based on the specific modifications made, as well as the intended end use of the animals meeting special care and nutrition needs of the GE farm animals based on the specific modifications made, as well as the intended end use of the animals  Paying attention to the special needs of GE farm animals will result in improved scientific outcomes 16 Investigators should strive to achieve their scientific goals in line with the best possible animal welfare standards


Download ppt "Www.ccac.ca.  This training module is relevant to all animal users working with genetically-engineered (GE) farm animals in research, teaching or testing."

Similar presentations


Ads by Google